
AD-753 400

PROGRA-M TRANSFERABILTTY - DATA ACCESS
REPRESENTA-TION FOR SECONDARY S'T-ORAGE

Stuart C. Schaffner, et al

Massachusetts Computer Associates, Incorporated

-Prepared for:

Rome Air Development Center

November 1972

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5235 Port Royal Road, Springfield Va. 22151

.. ADC-TR-72.-289.
"Final ' Repo rt'
N6-vembe&, 1,9172

"RPRO.GRAM, TRANSFERABILITY - WDATA

,ACCE-SS 'RESENTAtiON' FOR SECONDARY STORAGE

SMassachusetts Computer Asso~ciates, Inc.

Approved 'for Public Release.
Distribution Un'limited.

NATIONAL TECHNICAL
INFORMATION SERVICE U

Rome Air Development Center
Air Force Systems Command

Griffiss Air Force Bose,.New York

UNCLASSIFIED
Z . Serurity Classification "

DOCUMENT CO~4R*R.DATA -R&D
(Security clauiflicattcn-cl title,. body of 'abstract and IndeL;ng annotation must be entered when the overall report Is claislllid)

I. ORIGINATING ACTIVITY-(Corporate author) IZa.'OEPORT SECURITY CLASSIFICATION'

Applied Data Reseaidh, Ine-. (Massachusetts Computer .NCLASSIFIED
'2b. GROUPLakeside Office Park Associated)

Hakefield, MA 01888 A-N/A
3. REPORT TITLE .

PROGRAM TRANSFERABILITY - DATA ACCESS REPRESENTATION FOR SECONDARY STORAGE

4. OESCRIoTIVE NOTES (Type of 'report and Inclusive dates)

,FTNAT,..
5. _AU THORIS) (FIrst name, middle initial, last name)
'Stuart C. Schaffner
David B. Loventan
Robert E. Millstein

6. REPORT DATE 7a. TOTAL NO. OF PAGES 7b. NO. OF REFS

-November 1972 158I 7
8.a CONTRACT OR GRANT NO. go. ORIGINATOR'S REPORT NUMOER(S)

F30602-71-C-0310
b. PROJECT 'O.

.JobOrder No.: 45940202
c. 9b. OTHER REPORT NO(S) (Any other numbera that mny be assigned

this report)

d. RADC-TR-72-?89
40. DISTRIBUTION STATEMENT

-. Approved for Public Release. Distribution Unlimited.

II. SUPPLEMENTARY NOTES 1i2. SPONSORING MILITARY ACTIVITY

Pome Air Development Center (IRDA)
I Griffiss AFB, NY 3,414l

13. A8ST;IACT

This report presents theoretical work which should lead fairly directly to
aralytical tools which can materially reduce the cost of transferring programs from
one computer system to another. Past Oork has indicated that program transferability
ic a multifaceted problem requiring different soTutions for different situations.
This report concentrates on one such facet; namely, access to data stored on non-
random access devizes, zuch as tape and moving head disk. The report asserts that
programs fail to be transferable in part because they either underspecify or over-
specify their data processing requirements. A unified, general description of data
files and data access methods, called the data access representation, is developed
which, it is asserted, is detailed enough to allow efficient use of complex I/C
devices, yet simple enough to make possible the development of analytical tools to
study and modify progrruns using the data access representation. As an example of
such a tool, an algorithm is developed which will alter a program to compensate for
any of a c]',ss of data file structure transformations similar to those required to
transfer a data file from one I/O device tc another. The data management routines
of three important operating systems are then considered: IBM 0S/360, CDC SCOPE,
and HOIEYýELL GECOS. Each is descrited in. etai in termp of the data access
representa• ion.

D D, FoM 1 F7O
DDI NOV es51 473 INCLASSTFIED

_UNCLASSIFIED -

-security Classification

14YORO LINK A LINK'B' LINKC

_ROLE J WT ý,ROLE JTIT R L WT _

Data access-methods
Data acce~ss representation
Transferahle programming

~Transferable efiVironn'ent

I tit~iL_

O PROGRAIM TRANSFERABILITY - DATA

ACCESS REPRESENTATION 'FOR SECONDARY S-TORAGE

Stuart 0•. Schaftrer
David B. LoQveman
RobertI E. Millstoin

Massachusetts Computer Associates, Inc.
(Formerly Applied Data Research, Inc.)

Approved for Public Release-
Distribution Unlimited.

Do not return this copy. Retain or destroy.

FOREWORD

This technical report was prepared by Massachusetts Computer
Associates, formerly Applied 'Data Research, Inc., Lakeside Office
Park, Wakefield,'MA, 01888,, under Contract No. F30602-71-C-0310,
Job Order No-. 45940202. The report has 'been reviewed by the,
Office of Infbrmation, RADC, a'n-6 ha-s been approved for release to
the National Technical Information Servi"ce (I1TiS).

The RADC project engineer was James A. McNeely (IRDA).

This report has been reviewed and is approved.

Approved.,
AES A. McNBELY

Project Engineer

Approved:

FRANZ H. DETTMER, Colonel, USAF
Chief, Intel. anui Recon Division

FOR THE COMMANDER:

FRED I. DIAMOND

Chief, Plans Office

ii

ABSTRACT

Th'- paper presents theoretical work which shouldlead fairly directly
to analytical tools which can materially reduce the cost of transferring-pro-
grams fr6m one computer system to another. Past Work has indicated that
program transferability is a muititfaceted problem --requiring different solutions
for differtent situations. This paper concentrates on one- sucrhfacet; namety,
acceosqs to data stored on non-random access devices such as tape and
-movipg head disk. The paper asserts that programs fail to be transferable in
partbecause they either underspecify or overspecify their data processing
requirements. A unified, general description of data files and data access
methods, called the data access representation, is developed Which, it is
asserted, is detailed enough to allow efficient usa of complex 1/0 devices
yet simple enough to make possible the development of analytical tools to
study and modify programs using the data access representation. As an
example of such a tool, an algorithm is developed which will a.l•er a program
to compensate for any of a class of data iile structure transfo •ations similar
to those required to transfer a data file from one I/0 devi. :) -nnothef. The
data management routines of three important operating -,ysterAo ..a then
considered: IBM OS/360, CDC SCOPE, and HONEYWELL GrCfý '_1. Each is
described in detail in terms of the data access representati Jn.

TiABLE OF CONTENTS

1. PROGRAM TRANSFERABILITY - •AREVIEW 1

2. ON, THE' NEED FOR DEVICE "DEPE.NDENT CODE 6

3. PHYSICAL REPRESENTATION 10

3.1 Volume 10

3.2 Device 10

3.3 Graphical Representation 11

3.4 Tape: An -Example of a Physical Representation 15

4. DATA ACCESS REPRESENTATION 18V

4-. 1 Leve. of Detail 18

4.2 The Data Access Technique 19

5. TRANSFERABILITY OF PROGRAMS USING THE DATA ACCESS

REPRESENTATION 32

5.1 Characterization of Programs 32

5.2 Characterization of Program Execution 39

5.3 Associate Graph Transformations 44

6. ADDITIONAL MACHINERY FOR THE DATA ACCESS

REPRESENTATION 64

Preceding page blank

TABLEOF CON.,NTS (Conth)

6.\I Modifidationf of Data :Structures, 64"

6.2 Retgresentative Nodes 70

6. 3 Choice Brackets 72

ý2.-4, The C? Node 74

7. IBM. OS/360'ACCESS METHODS 76

7.1 Introduction -76

7.2 c~es s Methods 76

7.3 Sequential Access Methods 77

7.4 Partitioned Access Methods 92

7.5 Indexed Sequential Access Methods 99

8. CDC SCOPE ACCESS METHODS 109

8.1 SCOPE Access Method Elements 110

8.2 Forward Sequential File Structure 116

8.3 Doubly Sequential File Structure 116

8.4 Random Access File Structure 118

8.5 SCOPE Abstract Machine 120

8.6 SCOPE Data Acce:s Macros Useable on

Sequential Files 125

vi

TABLE OF CON-TENTS (Coti t .)

8;-7 'Macros and Transfors Useable -on Random Access-

Files 134

8.8 File Structure Templates 137

9. HONEYWVE!,L (GE) 600 GEFRC (GENERAL FILE AND RECORD

CONTROL-) 139

9.1 IntrodUction 139

9.2 File Structure- Standard System Format 139

9,. 3 File Control Block - 144

9.4 Suffering 147

9.5 Logical Record Processing 1-48

9.6 Device Positioning Commands 154

9.7 Physlca3 Record Processing 156

9.8 Input/Output Editor Functions 156

9.9 File Preparation Commands 158

BIBLIOGRAPHY

vii

EVALUATION

Contract F30602-71-C-O310, Environment for Transferability, was under-
taken t6 inves.,ate the possibii1ity of minimizinq the propaqation of hard-
ware' itelligehi&i& nto 1nte•ljoence application programs operating on them.

Currently, Data Managemenit Systems are not transferable among machines of
different manufacture's' computer systems irn spjite of beinqprogrammed in the
same language-.

Systems of the size ahd complexity needed to provide adequate support to
intelligence functions must be tailored to the capabilitie -of a- specific
manufact`er' s hardware. When-the users of these computer systems '(hardware/
toftware) are forced to change to a different computing environment, supplied
liy a different manufacturer; they must itedesign all their application programs.
Thits, very expensive.

In an attemot to rectify this conition (Ref RADC TOP 4) RADC decided to
conduct an investigation of the-characteristics of the dAta access techniques
used with-differeh't computer manufacturers. The investiqation inc-l'ded a
detailed examination of the different data management systems and resulted in
the de&6opment of an algorithm which can be used to alter a nrogram to com-
pensate for a class of data-file structure transformations similar to those
required to transfer a data file From one I/O device to another.

The effort provides the necessary two•1 to support the design, development/
modification, -and implementation of transnarent comnuter software for use
within the intelligence community.-

F.,ýS A. ?MCNEELY
(A~o4ject IEngitieer

1. PROGRAM TRANSFERABILITY -,A REVIEW

It is appropriate to begri--this paper with a- review of our previous

work, -which constitutes the foundation of our current effort. The first point

,to note is our definition of the program, transferability problem. In order to

reduce an amqorphous, probably unsolvable problem to manageable proportions

we imposed several conditions:

* We are concerned with the transter of large programs --

written in; a high level language; consisting of many pieces

interconnected in a more or less complicated way; intefacting

With secondary storage.

* Although the difficulties associated with standardizatio.,

are real - and we will, in fact, introduce new suggestions

for standardization (at least functionally) - these difficulties

are mainly administrative, not technical, and will not concern

us here.

* We restrict the. computing milieux among which transferability

is feasible to machines :f similar design and similar capac.ty

-- that is, "FORTRAN machines" with comparable memory

sizes. We will consider transferability between a 360/65

and an 1108, but not between a PDF .8 and a 6600.

o We regard the transferability problem as solved when a

program running with acceptable efficiency on one machine

can be moved, at acceptable ,,ost, to another machine on

which it again runs with acceptable efficiency. this view-

point implies that such a solution will not allow the "last

inch" of operating/efficiency to be obtained in a piogram

"that is to be -transferable. We accept, this loss of efficiency

as the price we pay for moderate ,transferability costs, As

ih so many other areas of compute6rscience,, this position is

a balance; between otwo0competifigýdemands,.

We shall see in the sequel why we introduced these-restrictions, but let us

leave them n jw.

We i-6dgad a program as consisting ,of tbhree parts

* Algorithm - the core of a program is the algorithm which is

to be Implemiented. The point of the third restriction above

is that the algorithm implemented is sensitive to computer

design and capacity. One would use different sorting

algorithms on a PDP-8 and an ILLIAC IV. In order to have

any basis at all for accomplishing transferability, we had to

have a constant, and we chose it to be the algorithm designed

to solve a problem rather than the problem itself. The algo-

rithm is conventionally described in a high level (algebraic)

language - e.g., FORTRAN, ALGOL - and we repeat that we

will not consider the very real problems of standardization of

such languages.

* Program assembly - large programs are commonly written in

pieces which have to be assembled into running modules.

The pieces can be code or data and can be related as sub-

routines, coroutines, overlays, Job steps, etc. We call the

process -f gluing these pieces together program assembly

2

File structures - the programs we are concerned with

interact with secordary storage They are sufficiently

large and complex that all code and data cannot be core

contained, and hence they require a file structure to

manipulate objects in secondary storage.

Now, perhaps the most transferable program is a simple FORTRAN main pro-

gram without subprogram calls and without i/O. This suggests that the dif-

ficult transferability problems lie in the areas of program assembly and file

structures. We first note that these two troublesome program parts interact

more with operating system than hardware features -- e.g., with loaders

and file handlers rather than with arithmetic units and memory address regis-

ters. This implies that functional standardization of at least some operating

system features might be necessary to effect program transferability.

High level programming langi ges provide an effective means of
describing an algorithm (and, hence, standardization of these languages

could be expected to solve the transferability problem for at least this portion

of a program). When we consider program assembly and file structures the

problem is not so simple. We dc nct have high level problem-oriented

languages for describing these paids of programs. The languages (e.g., JCL)

provided not only must describe the logical (p-oblem-oriented, algorithm-

determined) characteristics of the desired program assembly arnd file struc-

tures, they must also describe, and be couched in terms of, the physical

(machine-oriented) mapping of these program parts into the operating system-

hardware complex. This ,iapping is a series of calls on operating system

and hardware capabilities. This dual nature of the languages describing uro-

gram assembly and file structures lies, we believe, at the heart of the

transferability problem. When a programmer describes these program parts

he serves Iwo masters - one, the algorithm he is implementing (and, ulti-

mately, the problem he is so]ving) and, two, the hardwvare-operatinL system

on which he is implementing the algorithm. Unfortunately, he has only one

language to serve these two purposes. He must describe both the logical

structure and its mapping to physical realization with only one tool.

Now the portion of this description which is algorithm dependent is

transferable, but the remaining, machine-dependent, part is certainll .iot.

Suppose a programmer could write his entire program - algorithm, program

assembly, and file structures - in two colors, so that the statements in

black arp algorithm dependent and hence transferable, but the statements in

red describe the mapping of the algorithm dependent parts into a particular

machine. Then transferable programming would consist of describing a

problem solution in black and supplying adaitional red statements for every

computer facility on which one wished to realize that problem solution.

Unfortunately, programmers do not have two colors available to write

in. We believe that the present difficulty with transferring programs arises

because of this. Present facilities submerge the algorithm-dependent portions

of a program in a mass of mapping description. It is necessary to work back-

ward from the realization of an algorithm to reobtain the logical structure of

the algorithm, program assembly, and file structures. Our proposal to solve

the transferability problem is to provide separate means of describing tie

algorithm. dependent and machine-dependent portions of a program.

Let us now examine the current situation in terms ef the availability

of black and red languages.

4

* Algorithms - high level algebraic lang-,ages provide

suitable black languages. Red languages, which would

describe the mhapping from a black laaguage to machine

language are not necessary becausf we already have

software (compilers and interpreters) which perform this

mapping.

a Program assembly - it is possible to describe a (hopefully)

sufficient black language in terms of the various possible

logical relationships (subroutine, coroutine, etc.) among

program pieces. A suitable red language would describe the

physical relationship (overlays, etc.) among these same

pieces. The problem is more fully discussed in the "Handbook

on File Structuring" and "The Representation of Aigorithms".

0 File structures - this problem is somewhat more difficult,

if only because of the great diversity of secondary storage

devices. Our current effort is centered araund obtaining

functional descriptions of meta-devices which are sufficiently

general that they provide a framework in which logical file

descriptions can be made. This would constitute a black

language. In addition, these functional descriptions must

be clearly mappable intc a large range of physical devices.

Such a mapping would constitute a red language. The

remainder of this paper will describe our efforts to obtain

such descriptions.

S5S

2. ON THE NEED FOR DEVICE-DEPENDENT CODE

One of th3 most direct ways of ensuring "transferability" of a user

program is to write I6 ,o: a device-independent environment. The operating

system then contains mapping software which will support this general

environment on any of a range of specific machine configurations. This user

program may then be transferreJ without change between any two machine

configurations within the range of the mapping software of the operating

system.

SThis method has been used with success for efficicit random-access

storage devices such as fixed-head disk and drum. The device-Independent

environment includes a virtual memory space within which the user program

may directly store and access the data it uses. This virtual memory space is

partitioned by the operating system into pages or segments, which are mappec'

onto blocks of memory on the random access devices. A reference to a

particular location in virtua' memory is mapped automatically into a ex'erence

to the corresponding block of memory on the random acess device.

In order to efficiently use a virtual memory environment the user

program must organize its virtual memory accesses to minimize the size of,

and number of changes to, tho working set of device memory blocks.

Techniques for accomplishing this are fairly well understood and are fairly

independent of the specific devices upon which the virtual memory is mapped.

Thus a program written for such a system will be truly transferable as we

have defined the term; the program will be reasonably efficient in its origii

form, will require practically nr reprogramming for a new computer config-

uration, and wV!l run reasonably efficierntly on the new configuration.

6

Random access devices, however, are not suitable for all types of

secondary storage. To provide fast access to any point in memory no

matter what point was accessed before requires complex and expensive

equipment. For example, the cost of 256K of fixed head disk memory for a

PDP-11/20 computer with 8K of core is roughly equal to the cost of the rest

of the system.

Th -e is another class of storage devices, however, which offers

greatly reduced cost per word of memcry but which allows efficient access to

that memory only in certain sequences. We shall call these devices moving

head devices. The most common examples are tape, moving head disk, and

data cell. These devices are especially useful when there is a large amount

of data which is accessed in some particular sequence, for instance, while

sorting date or while updating an information data base.

Data stored on such a device can be thought of as having two

simultaneous structures, physical structure and access structure. The

physical structure is engendered by the fact that the data is stored on a

physical object, and thus a word can be said to have a definite position in

real space at any given time. Thus a particular word of data may be thought

of for instance, as the 3rd word of the 5th track of the 2nd cylinder of the

disk pack A0001. As we shall see in part 3 of this paper, the physical

structure representation of data is not only highly sensitive to alterations in

machine environment but also not really satisfactory as a data representation

even within one environment.

Data stored or, a moving head aevice is also structured by the set of

hea&- positioning commands allowable on that device. We call this the access

structure of the date. ' This structure is of greater use to the programmer, as

it contains explicitly the Information ho needs to effectively access data in

7

iome particular sequence. It is the access structure of data which forms

the bas.s for data management systems such as the IBM OS/360 daca access

methods. Data on tape is "sequential" not because words appear sequen-

tially on the oxide layer of the tape but because the tape head passes over

these words in one particular sequence when the tape drive is instructed to

rend cr write forward. We shall discuss this in more detail in part 4 of this

paper.

The access structure of data ,oms, then, partly from the physical

arrangement of data words on a storage volume and partly from the se')f

po.AsLble sequences in which these words may be accessed by the device

upon which the volume is mounted. Thus, for instance, a tape mounted on

a tape drive which reads)r writes forward and backward has a radically

different access structure trian the same tape mounted on a tape drive that

reads and writes only forward.

Can one solve the problem of transferability for moving head devices

by de .eloping a completely machine independent programming environment,

as has been done successfully for random access devices? We feel not, at

least ft.r the near future. It is, to be sure, fairly easy to map a particular

physical structure representation of some data on one device onto an

"equivalent" physical structure representation on some other device. If

these tw', devtces have dffferent access capabilities, however, the access

structures of these two "equivalent" data representations may dciffer

significantly.

A tape iewinci may take several seconds; a disk head seek may take

several hunchiid millise .cnds; a typizal CPU instruction, however, takes

orly a few micro-seconds. This great disparity in speed between the

algorithmic and data access parts of a program using moving head devices

8

usually implies 'hat data access efficiency rather than computational

efficiency determines the overall program efficiency. In other words, using

an algorithm which "wastes" several hundred CPU instructions in order tc

save one disk head seek or tape rewind is usually a very good trade-off.

We must always keep in mind that the ultimate purpose of a user

program is to solve some problem for that usei. The algorithm'--, program

assembly, and data access parts of a program are simply means to that end.

This is why we include in the cost of trar.sferability of a user)rogram not

only the cost of alteration but also the cost of using a suboptimal problem

solution.

It may eventually become possible for a user merely to state the

problem he wishes solved. System software will select an algorithrm and

data access scheme suitable for the particular machine environment that

obtains. These problem statements will be truly machine independent.

Such a system does not appear feasible in the near future, at least

for data management problems. Until it does become feasible it is futile to

attempt to solve the problem of transferability for moving head devices by

creating machine independent languages. Rather, we should strive to reduce

•the machine dependence of the languages to that minimum necessary to

utilize the special characteristics of a given environment. We must then

develop analytical touls to reduce as much as possible the cost of altering

this machine depe-ident code when the program is to be transferred to a

different machine environment. We begin to do this in part 5 of this paper.

9

3. PHYSICAL REPRESENTATION

It is possible to represent access to secondary storage by describing

in detail the physical layout of the storage volume and the mechanical actions

of the 1-0 r'evice upon which the volume resides. We shall call this the

physical representation of secondary storage access.

3.1 Volume

A volume 15 some physical entity such as a tape or a disk which is

capable of storing data. We shall assume that this data Is broken up into

units, all of the same size, which we shall call words. We shall further

assume that each word has a precise and unchanging posicron on the volume

and that any control datum, such as an interrecord gap on tape, consists of

some integral number of words. These assumptiorns aren't always true, as

we sh--ill explain later.

3,2 Device

The volume is placed on some machina called an 1-0 device. All 1-0

devices commonly used for secondary storage are basically similar and may all

be.. described reasonably well by the following model.

There are two parts to the model device, a volume positioner and a

read-write head. The volume positioner orients the volume so that the read-

write head is always "at" exactly one word. The head may be given a com-

mand to read or write the word it is currently at, or both. Associated with

the word, however, is an access protection attribute which may make reading

or writing (or both) of that word illegal. The volume positioner may be given

one of a set of commands. Any of these commands will cause the positioner

to move the volume so that the head is over another word. The current head

10

position and the command name determine exactly which word is selected.

The time required to move the volume is also determined by these two

parameters.

The fact that the pair (current head position, position command)

defines a unique next woi'd implies that the device has no memory of its

past actions. This is an important simplification, one that we would like to

retain if at all possible. It is in the main true, but there are exceptions.

3.3 Graphical Representation

We may express this riodel graphically. We shall denote a word by

:On

where n is the name of the word, and w its contents. If the word Is read-

only we denote it by

0

and if it is write-only by

0

if Jt Is not readable or writable we denote it as

0
EN or simply 0

11

For every volume positioning command that is legal for a given word

we draw an arc from that word to the word selefted by that command. We

label the arc with the name of the command it represents.

LI
C1 2

C

Cm

FLIZ

Once we have included all the words on the volume and have drawn

for each all legal command arcs we have a graph which represents the model.

We shall often call the words nodes. We shall at times call the wor',

currently under the read-write head the state. We represent this state by a

token, which is 'on" exactly one node at any given time. We call the graph

the volume access graph.

Let us now state some properties of a volume access graph. First the

graph is an s-graph; that is, there may be more than one arc from• a given

node to a given other node. This corresponds to the possibility that when

the head is it certain words on the volume two or more commands may have

the same effect. Second, the number of at-cs emanating from a given node

is bounded by the number of commands recognized by the device. For all

devices currently used this bound is finite, Third, the number of nodes is

finite. This corresponds to the fact -hat each node represents a unique area

on a volume of finite physical dimensions. ProwertA.es two and three together

2

guarantee that the graph is finite. Fourth, there is at most one arc with any

given label emanating from any given node. This corresDonds to the fact

that the device operates deterministically.

The fifth, and most interesting, property is that this graph is

,crongly connected for almost all volumes of interest. We shall show that if

a volume graph is not strongly connected then it represents only a part of a

complete process of information storage and retrieval. We make two

assumptions:

1. Let G he the set of all aodes in the volume graph. There is

a nonempty set S Q G of nodes called starting states for

which

v n S then

"Vm r G q a path p: n4 m

2. For every m e G, a a path q and a node A S such that

q: m4 p,

From these two assumptions it is easy to prove strong connectedness.

We must prove that

Vm , n e G thereis apath p: m- ri

By assumption two, there is a path q': m i.p . for soine Ic S . By

assumption one, there is a path q2 : ,.4 n . But then tne path q.2 q, : m +n

and thus p - q2 q1 I q.e..i.

Let us examr.ne the motivation for these assumptions. Assumption

one implies that it is possible to initialize the volume and the device such

that all parts of the volume can be accessed, no matter what the past

history of this volume has been. If the ussumption one were not true, then

it would be possible to make parts of a volurm•e permanently inaccessible on

that device. Assumption two implies that it is always possible to re-

initialize the volume. Let us consider sever-l Important devices:

1. ape

S contains the first wora on the tape. Assumption two can

be met by rewinding the tape. Assumption one is met by

loading the tape.

2. Disk

Here S = G and the spinning of the disk satisfies both

assumptions.

3. Card punch

A card punch does not necessarily meet assumption two.

If the punch does not accept alrealy pt.ched cards in its

input hopper then it will not be -o3s"bie to reinitialize a

partially punched deck of cards.

Assumptions one and two were created on the premise that data which

is read must first be written and data which is written will presumably

eventually be read. The reason card punches and line printers fail to meet

these assumptions Is that the subsequent readings are performed byr different

devices, namely card readers and humans, respectively. Obviousiy, a

human will access a printout differently than a line puinter, and the processes

must be described by different graphs. We will call any device which

produces a graph which is riot strongly connected an incomplete device. Tt

14

should be stressed that incomplete devices are inherently less flexible than

complete ones. We shall be able to describe accurately the use of an

incomplete device, but we shall not be able to use some of the transforma-

tiors and simplifications that we shall derive for complete devices.

3.4 Tape: An Example of a Physical Representation

While we won't attemp* here to completely describe a real tape

machine, we will concoct a simplified "tape" machine which still contains

some of the interssting features of a real one.

Our tape has 571 words on it. Each word may contain an integer
15

with absolute value less than 21, or one of the special codes <RG >,

SBT> , and <ET>. The first word on the tape contains <BT> and is

read-only. The 571st word contains <ET > and is also read-only. The rest

of the tape contains data and record gaps. A record gap consists of at least

4 words in succession all contain ing < RG > . The phy'Aical volume gr&ph is

as follows:

R

"Aý R
B B > B B

riN__2 _ 3_

< zzzz 1

Our three volume positioning commands are then F, B, and R

standing for space forward, space backward, and rewind, respectively. A

volume positioning command is of the form

MOVEH a

where a= F, B, or R

The current word may be accessed by three different commands.

1. READW

2. WRITEW

3. ON NODE (Cl, C2, ... , CN) GOTO (S1, S2, ... , SN)

where

Ci (1 i < N) can be DATA, <RG>, <BT>, <ET>

Ci / CJ for ijJ

St (1 < i < N) is a statement label

READW cause- the current word to be read and its contents placed in some

data transfer register. WRITEW causes the contents of some data transfer

register to be written into the current word. ON NODE causes the program to

branch to statement Si if the current word is of type Ci .

We now have a representation of a tape and a tape drive, and a

notation which allows us to write programs for them. Unfortunately, the

atomic operations F, B, and R are simply not realizable on a standard tape

drive. A tape drive takes some time to start and stop a tape, and during

this time more than one word will pass by the read-write head. Consequently,

the simplest tape comimands generally deal with entire records. The set of

tape record commands do not strongly conivect the data graph.

16

As an example of a real tape drive command let us represent

READER. READER assumes that the tape is stopped with the head in the

interrecord gap. The tape is started and twu words pass by the head before

the tape reaches speed. READER then ignores any further <RG > words.

When it encounters DATA words it reads them. After reading at least one

DATA word, it begins checking for an < RG > word. When it encounters one

it stops reading and halts the tape. As the tape slows down, orie word passes

by the head. We may express READER as follows:

MOVEH F

S2 MOVEH F

ON NODE (DATA, <RG >) GOTO (S I, S2)

S 1 READW

MOVEH F

ON NO)DE (<RG>, DATA) GOTO (S3, SI)

S3 MOVEH F

By describing tape operations in such minute detail, we have

introduced another problem. At the READER level the tape drive always

performs consistently. At the F, B, and R level it does not. All interrecord

* gaps are not exactly the same size, nor are they generally exactly an integral

multiple of data words in width. The drive does not stop a moving tape Ja

some precise distance, it only stops it within some range of distances. Thus

our graph represents a much neater and more consistent situation than really

obtains.

17

4. DATA ACCESS REPRESENTATION

4.1 Level of Detail

The physical volume representation, while it has many attractive

features, is not suitable as a language for expressing considerations of

transferability. Its principal inadequa'y is that it expresses secondary

storage operations in excessive detail. Thus instead of illuminating the

important characteristics of a data volume, it obscures them in a mass of

irrelevant detail. We were forced to go to this level of detail by two restric-

tions:

1. We required thac each node in the volume access graph

correspond to a precise physical position on the volume.

2. We required that the access graph state always correspond to

the precise position of the physical read-write head.

If a user program is to interface directly with an I-0 device without

any intervening software then these restrictions are necessary. It is generally

accepted, however, that a program which contains machine-level instructions

for an 1-0 device is seldom transferable. We shall always assume that

transferable programs communicate with secondary storage through some

standardized data management routines. These routines hide minor differences

between similai devices and insulate the user program from real-time con-

straints imposed by machine dynamics.

Given that we may interpose a data management routine between the

user program and the device, we have great freedom to choose to what degree

the details of device handling are left to the user and to what degree they' are

18

handled automatically. At one extreme is the volume access graph, which

we have already rejected as being too detailed. At the other extreme the

strong connectedness of most of our graphs allows us to construct the trivial

case of a compJete, or direct-access graph where it is possible to get from

any node to any other node in one step. Programs written for such a data

mrs'aagement routine would be completely "transferable" in that they could rui,

with modification on almost any machine and almost any operating syscem.

They would not be transferable in our sense of the w'-rd, however, in that it

would be almost impossible to assign meaningful costs to the arcs of the

graph. Thus it would be quite difficult to optimize a program to efficiently

use the special capabilities and avoid the special limitations of a particular

device.

This discussion should make it clear why we included in our

definition of transferability both the cost of recoding a program for a new

environment and the increased cost of running the recoded program in 'hat

environment. The volume access graph level allows a programmer to

minimize the run-time costs but at the expense of losing all control ovei the

reprogramming costs. The complete-graph approach, however, reduces the

reprogramming cost to near zero but at the expense of losing all control over

run-time costs. We need an intermediate level which is detailed enough to

allow reasonable control over specific devices yet general enough to allow

analytical techniques to be applied to thc process of reprogramming.

4.2 The Data Access Technique

We will now develop a language intermediate in level of detail between

the physical volume representation and the complete-graph representation.

We shall rtain the graph structure developed for the physical volume repre-

sentation, but we shall weaken its correlation with bpecific locations, on a

19

physical volume. We shall retain the notion of a device acting upon the

graph through a finite command set. Our device, however, will be not a

physical device but a virtual device formed by interposing a data management

program between the user program and the device.

4.2.1 Nodes

As before, the basic unit of data will be the word, and there

will be one word per node of the graph. We shall no longer require that a

node correspond to a fixed position on a storage volume, but we shall require

that it have a fixed logical relationship to all other nodes in the graph. We

shall describe this logical relationship when we discuss templates. As before,

each node shall have a name. We shall, however, call it the node type

instead of the node name, and we shall no longer require that it be unique

within the graph. We shall discuss this wher we examine the problem of

context.

As before, the symbol for a node shall be

(D

where w is the data word and t the node type.

4.2.2 Arcs

As before, the basic changes of state w~thln the graph are

described by arcs. Each arc has associated with it a label drawn from a

finite set of labels called the positiona] command set. Now, however, an

arc represents a change of state for the data management routine and device

together, rather than some definite physical movement. We shall again

20

associate with each arc a cost. This cost shall now, however, be a mean

cost as the operation the arc stands for no longer necessarily represents a

single physical action. If we have chosen our positional command set with

reasonable care the deviation from this mean will not be unworkably large.

4.2.3 Templates

One of the objections to the tape graph developed earlier was

that the number of data words on a particular tape was not constant. It

varied according to the number of interrecord gaps, the amount of friction in

the capstan brake, the temperature, and so forth. Thus a permanent

representation of a particular tape as a single graph was not logically

consistent. Even if we had a nonstretchable tape and a tape drive with

inertialess moving parts, it could be true that neither the user nor the data

management routines know how many words are on the tape until the tape is

completely read or written. We must find a precise representation for state-

ments such as "This is a tape, but of unknown length".

S,,.ch a tape is describable by a set of graphs, one for each

pcssible tape length. The set is enumerated by a single parameter, namely

tape length. This parameter has a lower a,,d an upper bound. We may specJfy

the value of the parameter to be any value between the lower and upper bounds.

Specifying the parameter results in a new set of graphs that is a subset of

- the old set. We call such a set of graphs a template.

We shall not define templates in general. Our use of templates

is at present rather limited and we do not know yet precisely what attributes a

Stemplatr should or should not have. We shall content ourselves with a

limited operational definition which we shall augment as the need arises.

21

The basic construct we shall use to build templates is the iteration

bracket. Its basic form is as follows:

LP [P]i RP

where LP, P, and RP are pictures

i is a non-negative integer

The position of the left and right brackets, which are parallel, the

same height, and at the same level, defines a set of boundaries for LP, P,

and RP. We say that LP has a right edge, P has both right and left edges,

and RP has a left edge. We can construct a picture by matching appropriate

edges. The basic form given above corresponds to a single picture formed

from LP, RP, and i versions of P. The i versions of P are chained togeLher

by placing the left edge of the second P', if it exists, against the right edge

of the first P, and so on. The right edge of LP is then abutted with the left

edge of the first P and the left edge of RP with the right edge of the i-th P.

If i = 0 the right edge of LP is abutted with the left edge of RP, Thus

<91

4

stands for

S P P P P

22

We now introduce uncertainty into templates by allowing

LP' [P)1 RP'
q=i

where

q is a parameter name

i and j are integers such that i J

This stands for all of the pictures obtainable by tterating P at]east i times

anr' at most J times. It should be clear that

LP [P]3 RP

and

LP [P3 RP
q=3

produce the same picture. We describe the prccess of selecting one of the

possible uictures by assigning to the parameter name q an integer value such

that i < q < . We shall allow infinity, co, as a possible value for j We

shall abbreviate

[•as []
q=O q

At times we would like to differentiate between elements of an

iteration. We shall therefore allow the following

."p I

where *o appears somewhere inside the picture. *p will be replaced by 1

in the first element of the iteration, by 2 in the second, and so forth up to

p. Thus

A L*p] Bp23

23

stands for

A L] L2 L3 B

We shall allow one further type of iteration bracket:

pi

which is equivalent to

II

4.2.4 Macros

The str-ucture of an iteration bracket

LP [P] RP
q

gives templates constnicted using brackets a particdlar form. LP and RP are

invariant outer parts. The chain of pictures P is enclosed by LP and RP. Its

variation is completely described by the parameter q.

Thus it is often tri-e that a template consists of a fixed number

of external nodes and a variable inner structure with the variation controllable

by a fixed number of parameters. We call a template such as this a macro.

For each macro we assign a unique graphic symbol. The parameters are

assigned unique locations within the symbol and the external nodes are

as:signed unique locations on the periphery of the symbol.

24

We may use any macro so defined as part of a larger template by

placing arcs between the proper points on the macro's periphery and other

nodes or macros. In fact, we may even define a new macro using the template

so constructed.

We shall not require that all iteration brackets be given explicit

parameter names, nor that all parameters within a macro appear on the macro

symbol. Thus it may be possible to specify all known parameters of a

template arid still have a template containing more than one graph, We say

that such templates have implicit parameters.

As an example, consider the following template

M n
_ A A A

(RB D RE BE

We may replace

m
A A

(RB _ OCDD RE

p =0

7 263

by the macro

p= (0, m)

with equivalence

Thus the template is now

n

q=1

We could further simplify the template by defining the macro

which replaces

n

~% A p=IO OmE

26

and with aquivalence

I I I

I I

Our template has now beca reduced to

m

Not3 that specifying the values for p in

results in a single graph, while specifying values for m and n in

results in a template containing several graphs.

4.2.5 Template Names

It will be necessary later to describe a template compactly

through use of some standard format. To accomplish this w-ý shall define a

template name as follows:

27

<TNAME> ::= <MACNAME-

or (< TNAME >) ,< PLIST >

<PLIST> >= <PRMS >, <PRMS> 0

<PRMS> >= <PNAM> = <BNDS >

where

<MACNAME > = name of a macro

< PNAM > = name of a parameter for some template

< BNDS > = limits on the value of the parameter

We shall assume that all templates have been described by a set of standard

macros or are refinements of these macros. Each macro in this set has been

given a name.

As we described earlier, a template is refined by specifying

values for, or value limits on, one or more of the ex)licit parameters of the

template. These values or value limits must bE within the value limits already

in effect for that template. The result is a new t3mplate which is a subset of

the old. This new template may have some explicit parameters which were

implicit in the old. The process of refinement may be carried further by

specifyi. parameters of the new template, and so forth. In the definition of

template name, < PLIST > is a list of parameter specifications sufficient to

carry out one level of refinement. Parentheses delimit multiple levels of

refinement, e.g.

(((<TNAME>) , < PLIST>) , < PLIST>) , <PLIST>

represents three levels of refinement of < TNAME >

28

4.2.6 Access Technique State

In the data access representation the physical read-write head

is replaced by a virtual head. The state of the system represents not the

precise position of a physical entity, but rather a collection of information

maintained by a data management routin6 in order to properly manage a

storage volume. Some of this infoTnatiorl may be stored on the volume itself,

such as record marks and home addresses. The rest of the information will be

contained in pointers, counts, and flags internal to the data management
routine .

It is crucial to program transferability that the information a

program may obtain about secondary storage be rigorously defined and strictly

limited. It must be possible at any point in a user program to be able to tell

exactly how much that program could know about the data structure it is

accessing. We call this information the context.

The user program gains context information from two sources.

The control portion of the program, in setting up the data file and initializing

the data access technique, establishes an initial template. Once the

algorithmic part of the user program is given control, it may gain further

structural information about the data it is accessing by using the command

ON NODE (Ti, T2, ... , Tn) GOTO (Si, S2, ... , Sn)

where

Ti, T2, ... , Tn are node types, no two of which are identical

Si, S2, ... , Sn are program statement labels

Tn may be < ELSE > , which stdnds for all node types not specified in TI,

T2, ... , Tn-i. If the current node is of type Ti then control will pass to

staterrent Si . Any statement label may be replaced by < NEXT > , which

stands for the statement immediately following the ON NODE statement. If

no Ti matches the current node type then the statement is in error.

29

4.2.7 Head Movement Commands

At any given point in a user program the data access technique

is In a definite state, represtnted by a node in the current template. From

this node emanates at least one arc to another node. Each such arc has a

label, and no two arcs from the same node may have the same label. At any

point in the user program the command

MOVEH <ARC >

may be given, where < ARC > is an arc label. If the current node has no

such arc emanating from it the statement is in error. If there is such an arc

then upon return the node terminating the arc will be the new current state.

Note that the program is not allowed to test the current state

to determine the labels of arcs emanating from it. This is quite important.

If we did allow such a test, then we would be classifying a node not just by

its type t , but by the name (t, A), where A is the (unordered) set of names

of arcs emanating from it,, This is a more complex system then is desired or

needed.

4.2.8 Data Access Commands

If the current node has associated with it a readable or

writable data word then that word may be read or written, respectively. We

shall later use some very specialized commands to read and write using

buffers. For our present purposes, however, we may define the access

technique's capability by the two commands

READW ani WRITEW

We assume some data transfer register R exists. READW will, if the current

node is readable, set R to the data value of the current node, WRITEW will,

if the current node is writable, set the data value of the current node to the

value in R.

30

For many devices it is not always possible to satisfy an

arbitrary sequence of READW and WRITEW commands without moving the head

between commands. For instance, it is generally not possible to WRITEW

more than once at the same node without moving the head. Thus we must

establish for a particular template a set of rules limiting the possible

sequences of reads and writes. We call such a set of rules an access

sequence discipline.

4.2.9 Template Refinement Commands

The data access graph of an already existing file is assumed

to be fixed. Because the data access technique cannot in general obtain

complete information about the structure of the file, it must express what

information it does know as a template rather than as a single graph.

When a new file is being created, however, the data access

graph does not yet exist. One might say that it is implicit in the inner

structure of the algorithmic part of the routine, but it is certainly not

accessible to the data access technique, nor is it reflected in any pattern

of data on a physical volume. Thus in this case the template represents real

indeterminacy in the structure of the file, rather than simple lack of informa-

tion.

The data access technique must, however, know enough about
the file structure to be able to insert data words and control information at

the proper points on the physical volume. For instance, it must know the

length of a record it is about to write if it intends to place a record length

indicator in the record header. Thus there must be some mechanism whereby

the algorithm may inform the data access technique of any refinements it

makes to the template name. To this end, we provide the command

REFINE TEMPLATE < PLIST>

If the current template name is <TNAME> , thc new template name will be

(<TNAMF>) , e-PLIST>

31

5. TRANSFERABILITY OF PROGRAMS USING THE DATA ACCESS
REPRESENTATION

5. 1 Characterization of Programs

We will, as before, consider a user program as consisting of an

algorithmic part, a program assembly part, and a data access part. The pro-

gram assembly part is normally executed only at the beginning and ending of

a computational process. It does not mix with the algorithmic part nor with

the data access part. We may consider the program assembly part as forming

a partition of the program's execution into subunits which wp shall call rou-

tines. A routine consists of algorithmic and data access statements inex-

tricably intertwined. To achieve transferability for the data access part, we

must fird ways of altering it in place, without having to understand or mod-

ify the algorithmic part.

We do not know in general how the user program's algorithm works,

nor even what the individual algorithmic statements mean. We will assume,

however, that the program documentation is sufficiently detailed to allow us

to construct a flowchart of the routine.

5.1.1 Pattern of Access Graph

We call such a flowchart a pattern of access graph. It can

contain the following types of flowblocks:

5.1. .1 Algorithmic Command Flowblock

This represents a sequence of purely algorithmic statements

where only the last stEtement may be a branch point and where only the first

statement may have a statement label. The branch instruction, if it exists,

must indicate explicitly the set of possible branch locations. This set must

be finite and any element of the set must either be the next instruction after the

32

branch or be a statement la-el. As we do not presume to know how the

algorithm works, we will consider all locations in the set as possible next

instructions whenever control reaches the branch instruction. An algorithmic

command flowblock is denoted by

If the first instruction has a statement label I , it is written outside the

upper left hand corner. If the last instruction is a branch instruction with n

branch locations we draw n arcs exiting from the flowblock and label each

with the probability that it will be chosen:

A

(pi) (p2) {(p (Pn

n

where P

5.1.1.2 Head Movement Command Flowblock

There will be exactly one of these fizwblocks for each MOVEH

instruction in the routine. We denote it by a box with the instruction written

inside:

MOVEH

where r is an arc label in the volume access graph.

33

5.1.1.3 Data Access Command Flowblock

There will be exactly one of these flowblocks for each READW

or WRITEW instruction in the routine. It is denoted by a box with the in-

struction inside:

[READW ~or____

5.1.1.4 Node-type Branch Flowblock

There will be exattly one of these flowblocKs for each ON NODE

instruction in the routine. ON NODE (N1, N2, ... , Nm) GOTO (S1, S2,

Sm) •will be represented by

(N1I (N 2) . (N m

S

If two or more of the Si are identical they may be represented by cne arc

labelled by a list of the node types.

34

5*.1.. 1.5 Template Refinement Flowblock

There will be exactly one of these flowblocks for each REFINE

TEMPLATE command in the routine:

SREFINE TEMPLATE

5.!.1.6 Start Flowblock

There will be one such flowblock. From it will be drawn arcs

to all flowblocks where control could enter this routine. If there is more than

one arc, probabilities w~2l be assigned:

P1 P2 P m

T2 . where Pi P=I

r. 1. 1 .7 Finish Flowblock

There will be one such flowblcck. All flowblocks representing

instructions where control will leave the routine will have arcs going to it:

35

5.1 .2 Context in a Pattern of Access Graph

One useful item which may be calculated for every flowblock

in a pattern of access graph is the set of possible combinations of template

name and node type tnat could be true of the access technique state when

control enters the biock of code corresponding to that flowblock. We call

such a set the context of a data access flowblock.

Each element of a flowblock context will be of the form (t,n)

where t is a template name and n is a node type.

We may calculate the context for every flowblock in the pattern

of access graph by a fairly simple algorithm. Assume for simplicity that only

one template name is allowed in the routine. This is the normal case, and

routines which alloyw more than one template can be handled by a relatively

straightforward extension of the algorithm to be given.

First we need, for the template accepted by the routine, a

function

a: AxT.*2~

where A is the set of possible arc labels and T is the set of possible node

types. For any a e A and any t . T the set a (a,t) contains the types of

all nodes that can be reached from some node of type t by executing the

command MOVEH a

Suppose there are n flowblocks in the pattern of access graph,

that the first flowblock is the start block, and that the nth flowblock is the

finish block. Let p: N-, 2 , where N=f 1, 2, ... , n , describe the

flow paths in the pattern of access graph. Let C 1 , 2, .21 C be sets of
3n

36

node types, Initialize C , C to be null sets and C to contain

the types of the possible initial states for the data access technique when

the routine is entered.

Define a path p through the pattern of access graph to be a sequsnce

of flowblock numbers p = (f1 , f 2 1 ... " f q) where for every i such that
1I< i <_ W -l1),

fI+ 1 E I (f j)

Call f the initial block and f the terminal block of the path. Associate

with any such path a set of node types T which we shall call the pathP
context.

For any given path p = (fII f2 ..." f) with context T , define an
2q p

extension of the path by the following nondeterministic algorithm:

1. If r (f q) is null, there is ar error. Otherwise select an

f from r (f)q+lq

2. If f is anything but MOVEH or ON NODE go to step 5.q

3. If f is MOVEH a, for some a, then set
q

T *- Uj a(a,t)
toT

and go to 5.

4. If fq is an ON NODE instruction and the arc (f f I) has

label t then set T .- t

37

5. Set z.-T
p

Set T 4-T -C Set C q -C U z.p p q+l1 q-il q+l

We can now use this process of path extensicn to calculate the

context of each flowblock:

1. Start with a single path, of length 0, namely the path (1)

consisting of the start block. Let T for this path be Cp

Let B be a set containing this path as its only member.

2. Extend eve-y path in 6. Let C be the set of all paths and

associated path contexts that can be formed in this way.

3. Subtract from C all paths with null contexts.

4. If C is null, stop.

5. Set B 4- C.

6. Go to 2.

It can be proved in a straightforward but tedious manner that this process

always stops in a finite number of steps and that the results are independent

of the order in which paths are extended in step 2. The resulting C1 . C2 ,

*.., C are the flowblock contexts we desire.

q

• 38

I

5.2 Characterization of Proaram Execution

Once we have the pattern of access graph for a routine we may analyze

all of the ways that routine could possibly access secondary storage. Any

path through the pattern of access graph which starts with the S block and

ends with the F block represents a possible flow of control through the routine.

We call any such path a control history, and represent it as (h1 h 2 h)

where each hi is a flowblock number. Of course, h1 = 1 and hm = q

where q is the number of flowblocks.

5.2.1 Information Flow During Program Execution

As a first step toward separating the data access part from the

algorithmic part of a control history, let us examine how each flowbiock affects

the flow of information between the algorithm and the data access technique.

We may divide the flowblocks into the following categories:

5.2.1.1 Type A Flowb1ocks

Algorithmic flowblocks have no contact with the data access

technique. Thus the internal workings of the data access technique, the

current state of the data access graph, and the current template have no

effect on the correct execution of an algorithmic flowblock. Conversely, the

data access technique cannot be directly affected by the execution of an

algorithmic flowblock.

5.2.1.2 Type A -4 D Flowblocks

These represent one way information flow from the algorithm to

the data access technit'ue. Included in this type are MOVEH and REFINE

TEMPLATE. These commands set no registers nor alter any data directly

accessible to Lhe algorithm, and thuo do not directly affect the exccution of

the algorithn.

39

5.2.1.3 Type D 4A Flowblocks

These represent one-way information flow from the data access

technique to the algorithm. This type contains the ON NODF command.

5.2.1.4 Type A & D Flowblocks

These reprevent two-way information flow between the data

access technique and the algorithm. Included in this type are READW and

WRITEW. In both cases data must flow between the storage volume and some

register accessible to both the algorithm and the data access technique.

5.2.2 Data Access History

Let us now examine, for any control history, that subseouence

composed of all flowblocks of the following types:

A.D

MOVEH

REFINE TEMPLATE

D- A

ON NODE

A&D

READW

WRITEW

449

We call any such subsequence a data accz.ss history. It represents

those operations that require the attention of the data access technique during

the course of program execution.

We s :ated at the outset that programs which depend on time intervals

rather than time sequences are not transferable. We shall now make use of

that restriction to decouple somewhat the actions of the algorithm and the data

access technique. We shall aid a FIFO queue, the Data Information Access

Queue (DIAQ). When the user proqram issues a command of type A -. D it

will be placed on the DIAQ and the user program will then continue as if the
command had been processed by the DAT. The DAT will, at its leisure, remove
commands from the DIAQ and execute them.

As long as the user program issues commands only of type A or A -, D

the algorithm and the data access technique may proceed independently of each

other. The DAT may allow commands to pile up in the DIAQ and thus the current

node and current template may not be what the algorithm expects. Commands of

type A or A -, D , however, do not transmit information from the DAT to the

algorithm and thus the algorithm cannot be affected by the discrepanry. For

clarity, let us call the node and template that should be current the current

node and current template and the node and template that are actually current

the lagging node and lagging template.

A user program command of type A & D requires that the DAT virtual

head be at the current node. The program must wait while the DIAQ is emptied.

The DIAQ contains a string of MOVEH and REFINE TEMPLATE commands. The

result of executing, in order, all commands in the string will be that the

virtual head will have been moved from tho lagging node to the current node

and the lagging template will have been refined to the current template. All
details of the path taken in getting fror.i the lagging node to the current node,

41

howe.er, will have been lost. Thus any other string of A . D commands

which has the net effect of moving the lagging node and template to the

current node and template will produce precisely the same result. We shall

use this freedom later.

In summary, when a command of type A & D is issued by the user

program that program must halt while the lagging node and template are

advanced to the current node and template. This process is defined by the

contents of the DIAQ. The DAT may accomplish this by executing all commands

in the DIAQ, or by executing an equivalent string of commands.

The only D -o A command is ON NODE. This requires that the virtual

head be moved to the current node in order to test its type. As with A & D

commands, any path to the current node will do.

A data access history may thus be characterized as

(n0, TO; P1N1P2 ,.. Nm-lPmNm)

where

n 0 is the starting node

N 1 1 < m are node accesses
i

P1i f i m are strings of A -. D commands

T is the initial template

Node n0 is the current node and T the current template as initialized by
0 0

the control section of the user program, T is a macro and no one of its
00

external nodes.

42

Node accesses are in general any A & D or D A commands. We

must make an exception, however, for ON NODE. ON NODE causes a branch

to one of a set of locations depending on the current node type. The result

of this branch is, however, implicit in the control history from which the

data access history was abstracted. Thus we must replace ON NODE

(T1 , T2 , T3) GOTO (S 1 , S2 , S2) with TYPE = [T 13 if the next block in the

control history was S1 and with TYPE = (T2 , T3) if the next block was S2

Thus the only legal node accesses are READW, WRITEW, and TYPE = (T1 , T2 ,

Each P can be thought of as an operator on the set of template
i

names:

P : t.t'

where

t is a template name or ERROR

t' = t if P contains no REFINE TEMPLATE commands

V = ERROR if a REFINE TEMPLATE command is incompatible with t

t' = the template name produced by applying in order all REFINE

TEMPLATE commands in P to t
i

Let Tf =P P ... P T be the final templa'e for this data access history.
f rm-l1 1 0

If Tf = ERROR then the data access technicue will have aborted the job.

Let us now consider a graph g ý, Tf . g has a definite number of nodes, say

q of them, which are labelled with the integers 1, 2, ... , q . Construct a

sequence of (m+ 1) node indexes as follows:

43

1. set g0 - n 0 ; set 1- 0

2. if i>m , stop

3. set g1 l1 PI+I gi

4. set i4-i+l; goto 2.

where P g9 is the node reached by taking the path defined by P1 from node

If each g1 is paired with the corresponding N the pair a,= 'g' N)
I 'i

defines a transfer of information between the algorithm and a parti'ular word

on a storage volume. The sequence a = (a a0 , . . , a) ,called a word
0' m

access history, expresses the total interaction between the algorithm anc the

data on secondary storage.

Thus for every data access history there is a set of word access

histories, one for each graph in the final templ~te for that data access history.

5.3 Associate Graph Transformations

Inasmuch as the data access representation can be programmed for a

variety of machines and operating sys:.'ms it is more transferable than, say,

machine code. The same can be said, however, foi most other data manage-

ment systems which interpose some software between the user program ance

the physical I-0 devices. Vve want more than just a clean language, We

wish to be able tc mov-, a data file to a different device, alter a program

using this file to take advantage of the characteristics 0f the new device, and

yet not alter nor be required to understand the algorithmic part of the program.

44

As was shown in the previous section, the algorithm's use of the data

file consists of a sequence of accesses to specific nodes of the specific

graph representing the data file. The only permissable types of access are

a test of node type and a read or write of the node's data content. The

algorithm is unaffected by the way in which the virtual head is moved to each

successive node.

If the new device is significantly different from the old device, then

one would expect that the "same" data file would be represented by different

graphs on the two devices. The nodes mentioned in any word access history

for the unmodified program would have exact counterparts in the new graph.

The new graph might have extra nodes, and it will almost certainly have a

different arrangement of arcs and arc labels.

We shall for the moment ignore the possibility of extra nodes and

concentrate on the problem of graphs with the same nodes but a different

arrangement of arcs.

5.3.1 Associate Graphs

It is first necessary to define precisely what is meant by two

graphs with the same ncdes but different arcs.

AG: Drfirnition

Let G and G' be data access graphs. G' is an

associate of G If and o-aly if

AG]: r(G) =

AG2:. Vn . :(G)0)

45

type (nG) = type (nG

access restriction (n G) = access restriction (nG,)

value (n = value (nG,)

where for any data access graph Q, fl (Q) is a set of integers uniquely

labelling each node in Q and where nQ is the node in Q with label n

Suppose G and G' are associates. G and G' can be thought of

as a single graph with two colored sets of arcs. The red arcs belong to G

and the green to G' .

Suppose that a program accesses the data file represented by G and

that one of its data access histories is

(goIT0;P1NIP2N2 '-. Pm Nm

G ,of course, belongs to TF = P P ' P1 T This data access history,F 'm~m- 1 10

in conjunction with G , gives us the data we need to construct a word access

history:

go,-) ,(gN) . (gNm)m

where for every 0 < I < m-l

Pi+ Igi = 9
+ 1

46

Suppose now that this program is to be altered to access G' in

place of G . We will examine the same data access history as pore and

suppose that the program has not been altered, In order that the algorithm

operate correctly, the word access history

'-) 0 (g ' , N1)' 'm" (gm

must be such that

gi -i for 0 < i < m

The pat, functions P, , of course, do not apply to the new graph G. We
I

need a new set of path functions Pi such that

gj+ 1 =p g for 0< i <m-l

Remember now that Pi is not a path in G but a path function

consisting of a number of MOVEH commands. Its action differs for different

nodes. Pi may be descibed as follows

P1i: - 1, 2, ... , q) 4 (R 1, 2,...., q

where P.(b) = ERROR if, starting from node b , the MOVEH commands in P." ~1
would cause an error.

Since path functions are right associative and since each P, is

compcsed of a string of single arc functions, we need a funztion Y sich that

Y : (a, n) 4 rF
a

~4 7

where

a !s an arc label

n is a node index

and where F ' is a path function for G' such that
a

F ' (n) = a (n)
a

In our two-colored graph analogy, suppose we are at node n and

there is a red arc exiting from n and labelled a . At the other end of the

arc is another node, say t . There is also (strong connectivity) a path from

n to t using only green arcs. y (a, n) will be a string consisting of the

labels on these green arcs.

Thus if every MOVEH a issued by the user program for data access

graph G is replaced by MOVEH y (a,n), where n is the current node at the

time the command is issued, the program will run successfully using %G'

Unfortunately, neither the user program nor the data access technique

knows the unique name of the current node. At most they can know the type of

the current node. Thus if it is possible to transfer from G to G' , y must

obey the following restriction

y (a,n 1) = y (a,n 2) whenever nI and n2 have the

same type for every arc label a in G . If y satisfies this we say that the

transformation from G to G' is context consistent. A context consistent

transformation will be denoted by ý (a,t), where t is a node type and

6 (a,t) = v (a,n) for some node n having type t

48

Let us formna. e this.

CCGT: Definition

3uppose the two graphs G and G, are associates and

are related by the transform

5: PCS xNTS -o TPCS'* U NIL))

where PCS is the set of arc labels in 0, NTS is the

set of node types in G , and PCS* I-; the set of all

finite strings of arc labels from G' . Lot oclm nts rif

PCS and PCS' be viev,,ed as right niw, il, k's')p(rnti•r"

on the sets of nodes of ; and G', r•,•poctlkfly, Im

a context consistent graph h ctrancrm If and!tmly If

CCGTI: ýfa F, PCS, ý t r. FZ I ,,(a,Z)- /Nil,) I,

vn (x Ix cT•(-) and type (x):

a n= (a,t) n

In other words, whenever there is an arc with label a leaving a node of type

t in G there is an equivalent path in G' lenoted by the string of arc labels

S(a ,t)

5.3.2 Associate Templates

In the previous section we dea't with single graphs. Any

practical transformation, however, must apply to all c.iphs in a template.

This requires the following generalization:.

49

AT: Definition

Let (T, TNC) stand for a template with name T and

naming convention TNC. Let (T', TNC') be another

template. Let

AT1: IT I = IT'I

and I TNCI = ITNC'i

T' is an associate of T if and only if there exist 1-1 onto

functions

•: T T'

a: TNC4 TNC'

such that

AT 2: vg e T , u (g) is an associate of g

AT3: vN E TNC , w: N c o(N)

CCT: Definition

T' is context consistent with T if and only if

CCT 1: T' is an associate of T

CCT 2: There exists a function 6 which for every

g F T is a context consistent graph transform

to UI (g)

50

5.3.3 Correct Localized Transfers

We are now ready to describe a process which will alter a

user program co compensate for a change to an associate template. This

process is quite mechanical, requiring no knowledge of the program's

function or logic. The results are guaranteed correct. Furthermore, if the

process is coupled with knowledge of the possible paths of control through

the program, their significance, and the probability each will occur then a

solution may be obtained which is nearly optimal among solutions which do

not alter the algorithm of the original program.

First, let us define a formal framework in which to discuss

the process. Let UP be a user program containing q statements. Let P

be the pattern of access graph for UP. When a flowblock in P corresponds to

the r-th command in UP then let that flowblock be labelled as flowblock r

Any legal control path through UP must start at command 1 and end at command

q.

For simplicity, we will not condense blocks of non-branching

type A commands into single flowblocks. As a result there will be a 1-1

correspondence between commands In UP and flowblocks in P

Suppose UP accesses a file F. We know the template name,

T , of F . We know the template naming convention, TNC, of F . This is

the set of I - id all refinements of T . Furthermore, for every graph q r_ T

we know the starting node, that is, there is a function S such that

,vg (T , S(g) (g)

Si

where I (g) is the set of all nodes of g . Now T, TNC , and S

characterize the file F , and we call the triple (T, TNC, S) a file.

Similarly we call the quadruple (P, T, TNC, S) a file use.

As has been described before, given a pattern of access graph P we

may generate the set of all paths through P which start at block 1 and end

at block q . Each path is described by listing, in order, the indices of all

blocks through which it passes. We call such a path description a control

history. From a control history we may produce a data access history by

converting, in order, all indices through use of the following rules:

1. If the index refers to a type A command, discard 'he index.

2. If the index refers to a type A & D command, replace it with

the command.

3. If the index refers to a MOVEH or REFINE TEMPLATE command,

replace it with the command.

4. If the index refers to an ON NODE command, check the next

index. Replace the current index with the statement TYPE = C,

where C is the set of all node types that could have caused

control to branch to the next index.

We describe the entire process of going from a pattern of access graph

P to a set of data access histories DAH by the function .

x (P) - DAH

where the domain of , is the set of all pattern cf access graphs.

52

The virtual head, using an element of DAH as input, operates on the

file described by the triple (T, TNC, S) We embody the rules of the data

access representation in two functions • 1 and Z 2 1 is characterized

as follows

given F = (T, TNC, S) , given DAH,

vh E DAH, 1 (Fh)=Tf CTNC

that is, • 1 extracts from a particular data access history all of the REFINE

TEMPLATE commands and produces the refined template they imply. t 2

describes the movement of the virtual head; it transforms a particular data

access history into a set of word access histories, one for each graph in Tf:

given F = (T, TNC, S) , given DAH ,

vh e DAH , WAH (h)= 2 (h,g) I g j (F,h)}

The range of 2 is the set of legal word access histories and the

special element <ERROR >, which implies that the commands in h were

incompatible with either the arc labels or the node access restrictions.

Normally, if UP is well written, onc. would not expect a WAH to

contain < ERROR > as it implics that there is a path through UP which would

cause an 1-0 error. This situation could arise, how.'ever, because P represents

a simplification of the true control structure of UP. If, for some history h

WAH (h) contains <-ERROR > then h is logically inconsistent with the data

file structure. We call a data hizLory, h, erroneous -f WAH (h) contains

<-ERROR > . If it can be shown somehow that h will never be taken by UP

then it is spurious.

53

Let us now describe a process of altering a user progizam, UP, which

accesses a file, F, so that the altered program, UP', correctly accesses a

file F' , which is an associate of F . Let F = (T, TNC, S) and let

F = (T', TNC', S') . The fact that F' is an associate of F implies the

existence of w, a, and 6 such that

S: T-4 T'

a : TNC-# TNC'

6 PCSx NTS-o (PCS' U <NIL>]

We shall further require that v g e T , S (g) = S' (•,(g))

Produce UP' by copying UP and then making the following changes to

the copy:

1. If a REFINE TEMPLATE command is found, it will be in the

form REFINE TEMPLATE cp, where cp: TNC -. TNC . Replace cp

by cp' *where vN E TNC, o(cp(N))=cp' (o(N)) .

2. If a MOi/EB a command is found, for any arc label a, replace

it by

SMOVEH [(a tI) (t) I (a,t 2) (t2 (a,tn) (tn)

where f t 1 , t 2 , ... , tn I is the conteAt of the corresponding
flowblock in P.

3. Do not alter any other instructions.

54

We have taken two notational liberties in the above. First, REFINE

TEMPLATE usually has an argument that looks like (PARM = 5) rather than

some function over the set of template refine nenis, TNC. It should be fairly

clear, however, that these are simply two forms of the same thing. One form

is more convenient for programming, one is more convenient for theoretical

work.

Secondly

MCo'VEH [al(t1 l 1t 1 2 ,...), a 2 (t 2 1 ,t 2 2 ,. an (t t

is equivalent in action to

ON NODE (t tll tl2,..ELSE) GOTO (NEXT, NEXT, CON1)

MOVEH a 1

GOTO €OUT

CON1 ON NODE (t 21t 22 ELSE) GOTO (NEXT, NEXT, ¢0"42)

MOVEH a 2

GOTO €OUT

ON2

'ONn-i ON NODE (tn 1 ,tn 2 , ...) GOTO (NEXT)

MOVEH a
n

¢OUT NOOP

55

That is, it will cause the virtual head to move along arc a1 if

the current node is of type tll, t 1 2 , .. , along arc a 2 if of type

t 2 1 , t 2 2 , . .. , and so forth. If the type of the ,u-rent node is not listed,

an error occurs. This form of MOVEH is introduced in order to retain a one

to one correspondence between control histories in P and P,.

While we won't rigorously prove it, it is i.'.rly easy to see that UP'

will perform the same calculations and get the same answers as UP. First,

UP and UP' have exactly the same control structures. The only alterations

were one for one repla.-ements of REFINE TEMPLATE and MOVEH commands.

Because neither of these commands cause branching nor do their replacements,

there is no change to the number of flowblocks in ,he pattern of access graph

ncr to the arcs betwrcen these flowblocks. Thus, if equivalent flowblocks in

P and P' are given the same integer labels, the control histories for UP and

UP' will be identical. As a result, there will be an obvious 1-1 correspondence

1" between DAH and DAH'

T: DAH -+ DAH'

where for any h e DAH , h and T (h) result from the same control history,

Just with different instructions in some of the flowblocks.

Now we must show tnat equivalent control histories in P and P'
compute the same thing. First, no type A instruction was altered. Secondly,

MOVEH and REFINE TEMPLATE are A -t D instructions. Short of causlng an

error, they convey no information to the program, and hence cannot directly

affect the result of any computation. The only real problem is with the A & D

commands READW, WRITEW, and ON NODE. These commands are the same

in UP and UP' , but they act upon different nodes because he files are different.

'-I'

All this can be summed up in the following way: For any h • DAH

h and r (h) must correspond to equivalent computations.

h has the general form

h= (P1N1FN ... P N)1122 m m

where for 1 < i< rn

1. 14= READW, WRITEW, or ON NODE

2. P =null op1

or

PilPi2 ... P ikfi

where for 1 < j < ki

PIi = MOTEH all
or

REFINE TEMPLATE Co ij

T(h) has the general form (h) = P'INIP 2N2 ... P' N1 1 m m

where for 1 < i < m

P' =null op if P -null opi I

otherwise P1 1 " i

where for 1< j < k

P = REFINE TEMPLATE •P' if P = REFINE TEMPAATE
i5

57

pij = MOVEH [6 (ajI ti) (t1), 6(aj, t2) (t2), ... , 6(aij, tz) (tz)]

where ftI, t 2 , ... , tzI is the command context, if piJ = MOVEH a j

The data access technique, E 2 , operating on h produces, for each

graph g in C I (F,h), a word access history

F (h,g) = ((no0 -), (nI, NI), 1 (nm, Nm))

where

1. n0 n1 , ... , n are node indices in g,

2. for 1<i<m , ni=pini-l

3. no = S (g)

Similarly, for any g' in (F', T(h))

'(h), g') = ((n' , n' 1 , N (n' N

where

1. n'o0 n i, ... , n are node indices in g'm

2. for 1 < 1 < m , n', = P'i nIi-I

Now we know, since F' is an associate of F , that if UP processes graph

g c T , unde- the same conditions UP' will process (g)

58

We thus want

9 2 (hg) = ((no0 -), (nl, N1) ... , (nm, N))

and

9 2 (r (h), w (g)) = ((n' 0 , ..), (n', N I (n, m , N)

to be equivalent' operations. Since (by condition AG2) nodes of the rame

index in two associate graphs have the same type, value, and access

restriction these two word access histories will be equivalent if for every

0 < i < m , n'1 =ni *

Fairly obviousl;-, the following two conditicns would guarantee this

by induction

IC1: n 0 n0

IC2: for 1 < i < m , if ni-1 = n' i-1 then n, n'ii-i'

IC1 is, of course, guaranteed true because we required that associ&te graphs

have the same starting node indices, i.e.,

V g 7 T , S (g) = S' (w(g))

To guarantee 1C2 true we must prove that for any i such that 1 - i - m-,

Pi n - P' n
Pini-] i i-i

59

But this is true iffor every j such that 1 < j < ki

p,1 n,_, = pl n
PiJ i- 1 iJ hi-1

If piJ = REFINE TEMPLATE so is p',i and p hi ni-1 = iJ n 1

If, however, P11 = MOVEH then

p' nh_ =P ni_ii -] iJ i-

is true by condition CCGT1 in the definition of the context consistent graph

transform 6.

Thus, since IC1 and IC2 are true, it must be true that

v h e DAJ-I, vg e ý 1 (F,h), % (h,g) = .2 (T(h) , (ug))

Thus we know now that the type A & D commands in UP and UP'

produce equivalent results. Since the type A commands in UP and UP' are

identical, the type A-. D commands don't affect the program, and the A & D

commands in UP and UP' produce equivalent results, UP and UP' must produce

equivalent results.

It should be pointed out that while the existence of one function

6 (a,k) is assured, in general there will be many alternate paths that

consistently replace an arc]abelled a emanating from all nodes of type t.

The programmer transferring UP is, of course, free to select the most efficient

context consistent path.

60

5.4 Summary

In Chapter 5 we characterized the interactions between the algorithmic

and data access portions of a user program. We then defined a particularly

simple data file transformation where the new file has the same nodes as the

old but a new set of head movement primitives. We showed that a certain

consistency had to exist between arc labels in a template and in its transform

in order for a simple transformation rule to exist. We called this context

consistenc",. A templte which was obtainable from another template by a

context consistent transform was called an associate template. We then gave

a mechanical procedure whereby a user program could be altered to correctly

access a transformed file and gave an informal proof of that correctness.

Such a mechanical procedure for altering programs is precisely

what we set out originally to produce. As such, it represents a significant

ddvance in the field of transferable data management facilities. It is by no

means a complete solution, however, Associate transformations are fairly

restricted in scope, and we suspect that most practical problems in transfer-

ability will require more general transforms. We must, therefore, find more

transforms and then define mechanical procedures for altering programs to

comr.nsate for them. It should be clear from the straightforward way in which

the associate template program transformation was derived and proven that we

have hardly begun to stretch the limits of our theoretical framework.

We are especially interested in the following:

I. Files often contain blocks of control information. In the data

access technique this would be represented by a strinq of

control rodes, say (n, n2) The user 1)roqram

61

mignt access all these nodes and then extract certain
information from all of them. Mathematically, one could
say that the program calculates the functions d 1 (n1 , n 2 ,

nm) , d2 (n1 In 2 , ... , nM)

In the transformed file, however, the old string of control

nodes is replaced by a new string of nodes (n'o, n'2 , p

No individual node n'1 has any obvious relationship to any

node in the old string, but the new string contains "the same

information", i.e., it is possible to define functions

t 1 , f2' -'" such that f. (n' 1, n' 2 , ... , n') = di (n1, 1

... , nm) .

2. Sometimes control information is shifted some limited distance

within a file. For instance, IBM OS/360 has a header defining

the length of a variable length record and CDC SCOPE has a

trailer. In both cases the size of the record is bounded. In

going from an IBM to a CDC system, one could pick up IBM's

header information by spacing to the end of a CDC record,

reading the trailer, then spacing back to the beginning of the

record. This is clearly not desirable from a performance

standpoint. There appears to be a variety of interesting

alternatives which should be investigated.

3. Suppose the transformed file has a different word width.

There will then no longer be a 1-1 relationship between

equivalent nodes. If the word width In one file is an integral

multiple of the width in the other then a relatively simple

transformation is pc ssible. Consider, bhwever, the case of

62

going from 3-bit octal tc 4-bit hexadecimal, where 4 octal

nodes correspond to 3 hex nodes This will require a more

sophisticated transform.

4. One problem with context consistency is that in order to check

for it one must not only know the original file but also its

transformed version. We would like to develop criteria which

will guarantee that a given file has an interesting and non-

trivial set of context consistent associates without having to

derive any of these associates.

63

6. ADDITIONAL MACHINERY FOR THE DATA ACCESS REPRESENTATION

The following is a collection of special techniques and abbreviations

thet were developed in the process of writing the next two chapters. These

are largely items of convenience which allow some of the complexities of

real-world systems to be expressed compactly; they do not really add anything

new to the theoretical frar1aework established in Chapter 5. XFORM, introduced

in section 6. 1 of this chapte,, is an exception. It allows us to model the

dynamic changes in data file structure that occur when a data file is written

into or edited. We show that this does not affect the results of Chapter 5

provided a "commutativity" relation holds between the possible transformations

caused by XFORM and any transforms to associate templates required for

transferability.

6.1 Modification of Data Structures

Heretofore we have always assumed that between OPEN and CLOSE

there was only one graph which represented the data file. We dealt with

templates only because it was assumed that the user jzogram and/or data

management routine did nOL know which particular graph applied. This

assumption works well when the data file is bei'ig read or when it is being

modified in place. It shows signs of strain when a new file is being create).

It breaks down completely, however, for IBM partitioned data sets. A

partitioned data set contains a directory of names, each of which points to a

sequence of data records called a member. It is possible to delete 'rembers,

create new members, and replace members with new ones of a different size.

It is not reasonable to deqrrbe this by a single data access graph.

64

We would like, therefore, to consider a class of data access graph

transformations. This class must be rich enough to cover the specific

transformations allowed in the access methods we are studying, yet

restricted sufficiently that they don't invalidate the analytical tools we have.

developed.

It should first be noted that useful transformations do not alter the

basic structure of a data file That is, replacing a member of a partitioned

data set still leaves it a partitioned data set. Thus we need only consider

transformations which map the members of a template into other members of

the same template.

The new command allowed in a user program will be

XFORM

where • is a transform.

First, some definitions.

Dl. For any data access graph g , • (g) is the set of all nodes

in g

D2. For any data access graph g and any set of node types T

7 (g,T) = (n I n is a node of g and type (n) e T) .

D3. Transformations generally depend on the current node. For

instance, in order to delete a member of a partitioned data set

it is necessary for the current node to be in the directory entry

for that member. Thus we will considei a transformation

to be valid only if the current node type is one, ot a set of

types C , called the context of

65

D4. A particular transformation 9 is valid only for graphs of a

certain structure. Fo" any transformation 8 there is a

template T which covers •
0

D5. A transformation a with context C and covering templatee
T has the form9

0= (81,1 2, 03)

where 0, e2 , and a3 are functions.

D5.! Vg E T , Vn E T](g, C

I. 91 (g'n) a I (g)

2. n a I (g,n)

That is, for a graph g and a particular current state n, 01

selects a subset of the nodes in g . These will be called

thepassive nodes and will be unaffected by the transformation

0 . The current state must be one of those passive nodes.

D5.2 vg fT , T n 9(g, C)0 0

02 (g,n) = g' e T

That is, for any given graph in the covering template T and

for any legal current node, 9, selects a new graph, a'so

in T

0

66

D5.3 Vg e T, Vn c r1(g, C), Vm 01 (g,n)

1. 93 (g,n,m) = m' eI(2 (g,nD)

2. type (m) = type (m)

3. value (m)= value (m')

That is, passive nodes are unaffected by the transformation.

03 identifies passive nodes in the old graph with identical

nodes in the new graph.

Now ti.at we have defined what a transformation is, let us see how

it affects a user program that employs one. Allow XFORM 9 to be represented

by a type A -4 D flowblock In the pattern of access graph. In order for e
to work without error, C must contain the context of the flowblocke
representing XFORM 0 . This guarantees that the current state whcn the

transform is to be made is one for which the transform is well defined.

As before, the paLtern of access graph generates a set of data access

histories, one for each possible flow of control through the program. Let us

consider one such history:

(n0T0 ; P1 N1 P2 N2- Pin mNt

Suppose that P = XFORM 9 and that no other P contains an XFORM.i

Suppose that T= P P P T

67

Now for this data access history, for every g e T there is a word access0
history

((no-) , (n, N1' (n, Nm))

where

1. for O<j < 1-2

a. n i 1C], (g)

b. nj+I =Pj+1n,

2. Z Pi ni_I i1

g' 02 (g, Z)

ni= 03 (g, Z, Z)

3. for i < j < m -1

a. n j C !](g')

b. n+ 1+ = Pj+I n,

So far we have done nothing more than pin down in precise notation

exactly what XFORM does to a program. We must now show that a program

transfer to an associate template is not damaged by XFORM.

First, a review of associate templates is in order. Remember that

associate templates T and T' are related by a 1-1 onto function

T -4 T'

68

wbi..h es3tablishes a correspondence between any graph g e T and some

graph ag = w (g) r T' . We further assumed a correspondence between nodes

of g and ag such that node i of g corresl orded to node I of ag.

The only interesting template associations were those that were context

consistent, that is, there was a function

6 : P Q -+ P

where

P is the positional command set for T

Q is the set of node types in T

P* is the set of all finite strings of positional commands for T'

This function relates arcs in g to equivalent paths in a g

We now make a very reasonable restriction and shall then show that

.t is sufficient to avoid damage:

Ri. Suppose T and T' are associate templates, XFORM ý is

covered by T and XFORM g' is covered by T . and e'
are equivalent if

R 1. 1 0, 1 = '1

Rl.2 vg T , vt c C , yVr. ((g, (t])

1)1) (w (g) , n) = u• (e 2 (g, n))

Sort of a "commutativity".

69

This is illustrated by the diagram

92 82

g- 9 g'

Rl.3 03= 0@

Restriction R1 can be paraphrased that 0 must transform associate

graphs into associate graphs.

The result of RI is that if equivalent data access histories for the old

ard the new user prograir start out accessing associate graphs they will at

each step of the way continue to access associate graphs, which was a]'. we

needed.

6.2 Repre,,entative Nodes

In a graph of the following structure
R

FF F F
0- 1 A -~A -+B

R
R _ _ _ _

R

7C

it would be convenient to be able to compactly represent the fact that all

nodes have an R link to the first node. We will do this by introducing a

representative node, which we draw as a dashed circle:

R F~N F FF

Representative nodes that do not appear within an Iteration bracket apply to

all nodes in the graph. Representative nodes that appear within an

iteration bracket, however, apply only within that bracket. For instance

,-, RS

_j2

is equivalent to

RS RS

RS

if one or more node type desiqnations appear within a representative node,

that node represents nodes only of those types. For instance

71

is equivalent ",

R

R

A BF C LF

6.3 Choice Brackets

Suppose P1I P2' "" Pn are pictures. Then

(P j P Pn
nn

represents one of P - P , and
- n

P2 P} for 1 < i < n

t ~PIP I _

represents Pi ' ff the boundaries between each ntuture are clear, we drop

the vertical dashed lines.

If the choice bracket represents a subtemplate, then an arc iniident
from ou,:side the choice bracket must bu made incident with ,ac.ý- item in the
bracket. We show this by splitting arcs.

72

Thus

(F F) F1

is equivalent to

*• A vertical bracket

pq P1

P
2

p

73

is equivalent to the horizontal bracket

u4

i_,6.4 The Node

We would like at times to indicate that when the curreiht state is some

i.---ticular node the command MOVEH A, for some A, will work but will move

the current state to some un, .jwn node. This could happen, for instance,

if an index entry on a random access device were used before it was initialized.

To do this we introduce the "node" C, which has the following

oroperties:

S] ON NODE (?) GOTO (Sl,) Is syntactically

illegal, I. e. ? is not considered to be a node type.

74

2. ON NODE (Ti, T2, . ., TN) GOTO (Sl, S2, .. , SN)

If this command is issued when the current state i.

the result is uncertain. It might cause a branch to one

of S1 - SN or it might cause an error.

3. MOVEH a, for any syntactically valid arc label a., may be

c null operation or way cause an error.

4. WRITEW, READW and any other primitives which access the

data portion of a node will either be null operations or produce

an error.

75

7. IBM OS/360 ACCESS METHODS

7.1 Introduction

7 This is the first of three chapters wherein wt attempt to describe three

different data management systems using the data access representation as a

framework. These descriptions should iot be taken as formal definitions, nor

as training manuals for data processing programmers. Rather they should be

viewed as experiments, wherein the theoretical work described in previous

chapters is measi-red against real-world problems.

The reader is also forewarned that chapters in this paper do not follow
in chronological order of development. In fact thls chapter, which describes

IBM OS/360, was written quite early, long b.ofore the material in Chapter VI

was invented. Ine reader will notice in this present chapter thaL no formal

mechanism is given for deleting a member of a partitioned data set. It was

precisely this diffi 2uity that led to the creation of XFORM.

The source for thiq r-hapter is the IBM manual

IBM System/360 Operating System

Supervisor and Data Management Series

Form C28-6646-2, November 1968

and to a lesser degi, e

IBM System/36U Operating System

Supervisor and Data Management Macro Instructions

Form C28-6647-3, November 1968

7.2 Access Methods

In IBM terminology, an access method consists of two parts: data set
organization and data access technique. A data set organization is a set of

rules which defines a basic form for the data set graph. Any unit of data which

can be fully represented by a graph corresponding to a data set organizaticn is

sale to be a data set having thý,t organization. It is possible for one unit of

76

data to be a daca set having more than ont, daca set organization. There are

four types of data set organization: sequential, indexed sequential, direct,

and partitioned.

A data access technique consists of a set of macro instructions and

some special lacilities which allow a program to efficiently transfer data

between itself and a data set. There are •wo data access techniques: basic

and queued. Basic access is asynchronous and unbuffered. The program must

supply the eccess method with a block of data to write or a block of core in

which to read data. A comrand to perform an activity inerely initiates tnat

activity. The program must issue a CHECK instrnction to ensure that the oper

ation is complete. Queued access uses internal buffering, louk-ahead reading,

and a string of output buffers to give the program the impression it is using I-0

synchronously but which still allows 1-0 to overlap with program execution.

An access method consists of a data access technique and a data set

organization. Theoretically all combinations are possible, but ,nly the ones

shown below have been implemented by IBM (as of Nov. 1968):

data access technique

data set organization basic queued

sequential BSAM Q SAM

indexed sequential BISAM QISAM

direct BDAM

partitioned BPAM

7.3 Sequental Access Methods

OS/360 supports two sequential access methods, BSAM and QSAM.

Both use the sequential data set organization. BSAM uses the basic data

access technique, and QSAM uses the qwueued data access technique.

77

7.3.1 Sequ!ential Data Set Organization

In order to define the sequential data set organization, we must define

three templates: records, blocks, and data sets.

7.3.1.1 Records

There are three different templates for records: fixed length or format F,

variable length or format V, and unformatted or "ormat U. A ctucular data set

may contain only one type of record.

7.3.1.1.1 FormatFRecords

J'- m

where m is the same for all records in the data set. We shall denote this

tern plate as

where I stands for and) stands for

The typa C node etl*ier contains a ci,•tage control character or is

ignored by the access method. The D type nodes contain the data, m words

in all (bytes In os/360).

The last record in a data set mat,' be t.runcated, which we will designate

d S F which stands for

m

78

7.3.1.1.2 Format V Records

L E~Iq-4
Here both q and scc may vary between records in a single data set.

q is of course the record length. Nodes of type C, D, and RE are as before.

Node RB now contains q in read-only mode. Node S contains an element

called the Segment Control Code, determined by the value of scc. We shall

draw a different macro for each value of scc:

7.3.1.1.2.1 SCC = 0

7.3.1.1.2.2 SCC = 1

7.3.1.1.2.3 SCC = 2

7.3.1.1.2.4 SCC = 3

7.3.1.1.3 Format U Records

or 0

79

which we shall designate by E , with I standing for the first data node

and) standing for the last.

7.3.1,2 Blocks

There are three kinds of blocks: formats F, V, and U. All have the

general shape

BB L

All block macros shall have the basic form

"l I
where [stands for BB and] stands for BE.

7.3.1.2.1 Format F

Format F blocks may contain only format F records, as follows:

We shall designate this by

Note that specifying a value for the parameter n does not turn the

block template into a graph, as the value of m is not yet fixed. We will not

always sp,•cify in a template symbol all parameters necessary to turn the

template into a graph. The reason shouli become obviou- when we discuss

format V blocks.

80

7.3.1.2.2 Format V

The basic form of a format V block is:

where I is the physical length of the block. We shall designate this as

V,P A I . The number of recnrds within a block is not explicitly known,

and must be discovered by actually traversing the path from BB to BE.

There are only certain forms. the list of records may take:

7.3.1.2.2.1

BB F-- •.- @
Jn

wherei=mxn, and n) 0.

7.3.1.2.2.2

VL0

7.3.1.2.2.3

7.3.1.2.2.4

El1

!8

7.3.1.2.2.6

7.3.1.2.3 Format U Blocks

is the only allowable form. We shall denote it as F7711.

7.3.1.3 Data Sets

It is not all that clear from IBM publications just exactly what a data

set is in general, or whether there even is a general, device independent con-

cept of a data set. The following material must therefore be considered

tentative and probably incomplete.

There are three radically different types of sequential data set. The

most common one has the general form

a Oa

1

which we shall denote as

witi- I standing for DB and) standing for DE. In this form any block of the

data set, once accessed, cannot be accessed again until the data set is

closed. We shall cali this forward sequential. This type of data set is

supported on all devices. On dire,.L access devices, once the read-write

heads have been positioned ,o access a data block they are in position to

access that block repeatedly. For this class of device there is a data set

form that we shall call reflex sequential:

82

which is

O- L a a

where the arc 0 allows cne to REREAD or UPDATE the block most recently

accessed.

Certain types of tape drive are capable of moving tape forward or back-

ward while reading or writing. On such a tape unit it is possible to have a

third data s(0t form which we shall call doubly sequential

which is

where 11 I stands for a block of data that can be accessed in either

direction.

It should be clear by now that when considering problems of transfer-

ability one must treat these three forms of "sequential" data set to be radically

different. From now on we shall confine our discussion to forward sequential

data sets.

The data set template is set up at the time the data seL is OPENed. It

consists of the standard forward sequential data set template plus a set of

parameters which refine this template. These parameters are stored in a table

called the Data Control Block (DCB). It should be emphasized that these

parameters are normally Dot sufficient to refine the template into a single graph.

Information such as the number of blocks in the data set is 3enerally not known.

The DCB contains a number of fields, not all of which pertain to data set

structure. Some of the pertinent fields are described below.

83

7.3,1.3.1 BLKSIZ=n

For format F blocks n is the number of words in a block. For format V

or U blocks n is the maximum number of worde in a block, including control

words.

7.3.].3.2 DEVD= code

This specifies the device type to be used and for certain devices

special information such as recording density for a magnetic tape or stack

number for a card punch.

7.3.1.3.3 LRECL= m orX

For format F records m is the number of data bytes in a record. If

spanned records are allowed then m is the maximum length of a set of spanned

record segments. X means that the maximum size is not specified.

7.3.1.3.4 RECFM = code

This is used to specify whether the records are to be format AT, V, or U.

If they are V then Jt also specifies whether or not spanned records are allowed.

7.3.2 Sequential Data Access Techniques

7.3.2.1 Queued Access

The queued access technique uses internal buffering which allows the

user program to use synchronous data access commands and yet still have over-

lap betw.,-, CPU processing and physical I-0 processing.

OS/360 offers a variety of buffering schemes. All ensure that some

finite pool of buffers is used to transfer an arbitrarily long stream of data

records between the user program and the access method. We shall not, at

this time, specify a standard for this buffe:ring. We shall simply require that

each system shall have at least one self-consistent buffering scheme in

84

exactly the same way for all devices that this access method supports. The

specific buffering scheme used here is an imaginary one provided solely for

logical concreteness.

7.3.2.1.1 Buffer Scheme

The access methoi provides three virtual registers: the buffer address
register (BAR), the buffer size register (BSR), and the buffer pointer register

(BPR). This triplet of registers defines the buffer currently in use: the BAR

conta.ns its address, the BSR contains its size, and the BPR points to the

current word of intecest within the buffer. The following commands are used
to manipulate buffers:

7.3.2.1.1.1 GBUF

This gets a buffer of size LRECL (a parameter in the DCB), places its

address in BAR, its length in BSR, and zero in BPR.

7.3.2.1.1., MKBUF < addr>, < len>

This allows the user program to set up a block of storage as a buffer.

It places < addr> in the BAR, < len> in the BSR, and zero in the BPR.

7.3.2.1.1.3 GVBUF

This returns the buffer defined by BAR and BSR to)uffer pool.

7.3.2.1.1.4 READN

If BPR ? BSR the statement is in error. Otherwise the data attribute
of the curren' node is placed into the memory location BAR i BPR and then BPR

is incremented by one.

7.3.2.1.1.5 WRITEN

BPR must be < BSR. The word at memory location BAR i BPR is stored
as the ddta attribute of the current node and then BPR is incremented by one.

85

7.3.2.1.2 More Notation

When the deta set is opened under the queued access technique, the

access mode must be set to either INPUT or OUTPUT. Jn INPUT mode the only

allowable command is GET. In OUTPUT mode the only allowable command is

PUT. The access mode, once set, cannot be altered until the data set is

closed.

7.3.2.1.3 GET

On return BAR and BSR will contain a buffer containing the next (BPR + I)

words of data on 'he data set. The user program is expected eventually to use

MKBUF and GVBUF to rp-,'_--n this buffer to the p-ol. There are several forms of

GET, depending on the block and record format.

7.3.2.1.3.1 Record F, Block ForV

GET MACRO

ONNODE (DE, ELSE) GOTO (ENDFIL, ¢NI)

¢NI ONNODE (RB, ELSE) GOTO (MN3, €N2)

€N2 MOVEH O.

GOTO CNI
€~N3 MOVEH a

MOVEH a

GTBUF

€N5 READN

MOVEH a

ONNODE (RE, ELSE) GOTO (MN4, MN5)

¢N4 MOVEH a

GET MEND

ENDFIL is the location to which control is passed when an end of file is

reached.

86

7 .J.2.1.3.2 Record V. Block V

GET MACRO
¢N1 ONNODE (DE, ELSE) GOTO (ENDFIL, cN2)

€~N2 ONNODE (RB, ELSE) GOTO (MN4, MN3)

€N3 MOVEH a

GOTO €N2

€N4 GTBUF

€N8 MOVEH a

IF (DATA (CURNODE) = 3), RESET SCCSW

IF (DATA (CURNODE) = 1), SET SCCSW

MOVEH a

MOVEH

€N5 READN

MOVUE a.

ONNODE (RE, ELSE) GOTO (€N6, €N5)

€N6 IF (NOT SCCSW), GOTO WN7

€N9 MOVEH •o

ONNODE (RB, ELSE) GOTO (€N8, €N9)

€N7 MOVEH a.

GET MEND

Note that this form of GET assumes that the last record on a data set is

not or [. It also assumes that GETBUF returns a buffer

long enough to hold any record or series of record segments. SCCSW is a

binary switch in the access method. it may be SET true or RESET false.

7.3.2.1.3.3 Block U, Record U

GET MACRO

ONNODF (BB, ELSE) GOTO (MNI, ENDFIL)

CNI MOVETT a

GTBUF

'N2 RP.ADN
1• i G•,VH It

ONNODE (BE, ELSE) GOTO (MN3, ¢N2)

87

€N3 MOVEH a.

MOVEH aC

GET MEND

7.3.2.1.4 PUT

PUT is used for output. It assumes that the user program has used

MKBUF to set up BAR, BSR, and BPR with a block of memory which is to be

written onto the data set. Upon return, this block of memory cannot be

accessed by the program without risking an error. It is assumed that even-

tuallv the access method ,,1il use GVBUF to return this block of memory to the

buffer pool. Again we will write different forms for PUT depending on the data

set organization.

7.3.2.1.4.1 Block F, Record F

PUT MACRO

MN1 ONNODE (RB, ELSE) GOTO (MN3, MN2)

¢N2 MOVEH a

GOTO CNI

€N3 MOVEH a

€N6 MOVEH a.

ONNODE (RE, ELSE) GOTO (€N5, €N4)

€N4 WRITEN

GOTO €N6

MN5 MOVEH aX

PUT MEND

7.3.2.1.4.2 Block V, Record V (assume spanned records)

PUT MACRO

¢Nl ONNODE (RB, ELSE) GOTO (MN3, ¢N2)

MN2 MOVE14

GOTO ¢Nl

€N3 MOIEH a

4N4 MOVFH

ONNODE (RE, ELSE) GOTO (€N6, MN5)

88

•N5 IF (BSR -< BPR) GOTO (€N7)

WRITEN

GOTO €N4

€N6 IF (BSR s BPR) GOTO ?eN7

GOTO 'N1

WN7 MOVEH 0

PUT MEND

7.3.2.1.4.3 Block U, Record U

PUT MACRO

MNl ONNODE (BB, ELSE) GOTO (MN3, €N2)

€N2 MOVEH

GOTO CNI

ýN3 MOVEH a.

ONNODE (BE, ELSE) GOTO €N5, €N4)

€N4 WRITEN

GOTO $N3

€N5 MOVEH aX

PUT MEND

7.3.2.2 Basic Access

In basic access mcde the allowable commands are READ, WRITE, and

CHECK. Execution of a READ or WRITE does not cause an immediate transfer

of data. Instead it creates a promise of such a transfer, called a Data Event

Control Block (DECB). This DECB is pushed onto the bottom of a stack which

we shall call the Pending Command Stack (PCS). The access method, at its

leisure, will execute the DECB on the top of the stack. When it is done it will

mark the DECB complete and remove it from the stack. Before the program may

use the data obtained from a REND DECB or may reuse the buffer space in a

WRITE DECB it must issue a CHECK instruction for that DECB. Control vill

not be returned from a CHECK instruction until the DICB in question, and all

DECB's higher than it on the PCS, have been executed arid removed from the

stack.

89

It is an interesting question in just what "state" the access method is

when the PCS is not empty. If we assume that the program always ChECKs

before using any core memory area mentioned in a DECB then we may consider
the access riethod "state" to be the state At would be in after it had emptied
the PCS. Normally we may accept this definition of "state" and fur all intents

and purposes ignore the existence oi the PCS. If an error occurs, however,

the "state" of interest will be the real accs-,s method state. The treatment of

1-0 errors in an asynchronous access method is a complex problem that will

not be considered at the moment. It should also be noted that the queued

access mode has the same problem.

The allowable commands in he basic access mode are READ, WRITE,

and CHECK. READ and WRITE deal not with records, but with blocks. Blocks

are treated as if they were either format F or format V. Records within blocks

are ignored, and record control information is treated as if it were data.

In the following READ and WRITE macros it should be remembered that

the READs and WRITEs are performed by the access method, not the user's code.

The true READ and WRITE macros for the user progrm.tn merely create DECBs and

push them onto the PCS.

7.3.2.2.1 READ

7.3.2.2,1.1 Format F

READ MACRO

PNl ONNODE (BB, DE, ELSE) GOTO (MN3. ENDFIL, WN2)

€N2 MOVEH a

GOTO MNIrN3 MOVEH c,

ONNODE (BE, ELSE) GOTO (¢N5, ¢N4)

€N4 IF (ACCESS (NODE) = NR) GOTO ¢N3

READN

GOTO MN3

SN5 MOVEH ,t

READ MEND

90

7.3.2.2.1.2 Format V

READ MACRO

¢~N1 ONNODE (BB, DE, ELSE) GOTO (MN3, ENDFIL, WN2)

€N2 MOVEH a

GOTO CN1

€N3 MOVEH a

MOVEH a

ONNODE (BE, ELSE) GOTO (MN5, •N4)

€N4 IF (ACCESS (NODE) NR) GOTO €N3

REAL'N
GOTO €N3

€N5 MOVEH a

READ MEND

7.3.2.2.2 WRITE

7.3.2.2.2.1 Format F

WRITE MACRO

¢N1 ONNODE (BB, ELSE) GOTO (MN3, MN2)

€N2 MOVEH a

GOTO CNI

€N3 MOVEH a

ONNODE (BE, ELSE) GOTO (MN5, €N4)

€N4 WRITEN

GOTO €N3

€N5 MOVEH a

WRITE MEND

91

7.3.2.2.2.2 Format V

WRITE MACRO

¢~N1 ONNODE (BB, ELSE) GOTO (€N3, €N2)

€N2 MOVEH a

GOTO CN1

MOVEH a.

€N4 MOVEH a.

ONNODE (BE, ELSE) GOTO (bN6, €N5)
4

€N5 WRITEN

GOTO €N4

S€N6 MOVEH a

WRITE MEND

7.4 Partitioned Access Methods

IBM claims that a partitioned data set is simply a collecition of

members, each of which can have any legal sequential data !, format. Fcr

the purpose of this discussion we will assume this to be true,

A partitioned access method is basically a sequent'al access method

with the addition of two new command macros, FIND and STOW. These have

approximately the same relationshtp to members of a pa:tjtioned data set as

OPEN and CLOSE have to sequential data sets. Thus in a sense we have

nothing new, as we agreed '.efore to consider an algorithm as starting when

the data set is opened and qlapping when it is closo%,. With a partitioned

data set (PDS), however, FIND and STOW are so much faster than OPEN and

CLOSE that we must consiaer them as being embedded in the algorithm. Thus

our model of a partitioned access method must explicitly include machinery to

allow the control taken to visit more than one member of the data set currently

open.

In order to do this, we must have an explicit representation of the

colhection of member names and of the pro.-ess by which these names are

located. This representation must also accurately model the process by which

members are added, deleted, o: altered.

92

7.4.1 Member

As far as we can tell from IBM documentation, a member can have any
sequential data set form, but with one extra twist. If a I TRITE macro immed-

lately follows a READ macro, LomethLng which is possiole only in UPDATE

mode, the block written will be the block just :ead. Thus we must have the

following form for a member:

0t R

where we will use • for writing and a for reading.

We abbreviate this as:

with representing MB and representing ME.

7.4.2 Directory Entry

For each member in a partitioned data set there is at leas-t one direct-
ory entry. Each erntrv for a member gives that member a name. One entry is

flagged as the official member name and the others are flaggeo. as aliases.

Each directory entry contains a pointer to the beginning of the member

it defines. It also contains an optional user data area. This area can contain

arbitrary information, but usually contains pointers to locations inside the

member. A directory entry can have the following form:

93

('-\ 3

I~namel =Oname•
S(=alias• DrYI 0

as sociated
member

Y

where

DB is the beginning of the directory entry

DN contains the name, or alias, of a member

DA contains 0 if DN contains a name and contains 1 if DN contains

an alias

DP points to the data set member

DTN points either to a note list or to the beginning of a block in the

data set member

DUD contains arbitrary data

DE is the end of the directory entry.

We shall use the abbreviation

for

We have taken some liberties with our previous notational scheme here.

The arc labeled a in

94

represents not just a particular arc but rather the possibility of dra Aing an arc

from any of the DTN nodes to any BB node ii. the data set member. We shall

call this a representative arc. Furthermore, the portion of the macro symbol

from which the arc emanates represents not just one DTN node but all DTN

nodes in that directory entry. We call this a representative node.

We shall make some use of representative nodes and arcs in the

following discussion. We shall not attempt to formalize rules for their use,

however. It is hoped that the context of each individual use will make the

meaning of that use clear.

7.4.3 Note List

A note list ii simaply a list of pointers to blocks within a member of a

data set. It: template is:

" 254

with symbol L and ecuivale:-nce

95

A DTN node in a directory entry may point either to a block in the

member or to a note list, whi,.h itself contains pointers to blocks in the member.

Thus we could in one sense bubsume note lists into the directory. There is or-e

important practical problem, however, which makes it worthwhile to include an

explicit rerre~entation for note lists. A DTN node is part of the directory entry

and has been allocated space in the same block as all other nodes in this

directory entry; a note list is a separate record somewhere else on the list.

It requires an extra read and perhaps an extra disk head seek to access a note
list. The overhead involved in doing this may well be a crucial factor in

practical pioblems of program transferability.

7.4.4 Partitioned Data Set

A partitioned data set consists of a directory and a set of members, as

follows:

E

PB

EE I

PE

subject to the following variations and/or restrictions:

The directory entries are collated by the value of the DN node, i.e.,

the names are sorted alphabetically.

Some of the members may be identical, i.e., more than one iirectory

entry may point to a particular member.

96

Any arc labeled E going from a DTN node to a BB node may be replaced

by I
E E

7.4.5 Space Allocation

One feature of the graph representation for a partitioned data set is

that it hides almost completely the process of space allocation on a physical

volume. This is convenient, as the access method is so constructed as to

shield the user quite thcroughly from any specific considerations of space

allocation. This gives the access method quite a bit of freedom to adapt to

different devices and lifferent data set histories without requiring changes to

any user program.

Space allocation in a partitioned access method is quite simple. The

size of a data set is fixed when the data set is first created, and cannot be

changed without recopying. The space can be thought of as a block of con-
tiguous words. A fixed sized area at the front of the data set is reserved for

the directory. The size of this area limits the total number of member names

and aliase2 and the total amount of user data in the directory. As long as this
limit is not reached, the access method will keen the directory properly sorted

and up to date.

The rest of the data set area is used to store members and note lists. A

member is stored as a set of contiguous words. The first member defined is

stored directly above the space allocated for the directory; each succeeding

member is stored immediately after the member that was defined just prior to it.

If a member is deleted and it is not the member most recently defined then the

space allocated to it becomes unusable; no attempt is made to move other

memners down co fill the space created.

97

;.4.6 FIND

FIND is given a member rame or alias. It will search the data set

directory for an entry of that name. If it does not find that name it will return

an error-code to that effect. If it does find the name, on return the access

method token will be positioned on the MB node of th3 appropriate member.

7.4.7 STOW

STOW causes an entry in the directory to be added, deleted, or

changed in -me. The specific details of the method of using STOW are quite

implementation-dependent. We will give here a more abstract, and hopefully

more understandable presentation.

7.4.7.1 Adda Name

The directory is sorted alphabetically by name. A new directory entry

is added between the name ordering just before it and the name ordering just

after it.

7.4.7.2 Change a Name

The directory entry corresponding to the old name is removed and an

entry for the new name made at the proper place in the directory.

7.4.7.3 Delete a Name

The directory entry for thi3 name is removed from the directory. I! this

is the only name of a particular member, then that member will thereby become

ur.,eachable.

7A4.7.4 Replace a Member

If the name given is not already in the directory, it is added. Other-

wise, the Pp pointer in the directr,- entry is made to point to a new member.

This may make the old member unreachable.

98

7.5 Indexed Sequential Access Methods

The primary feature of indexed sequential data sets is that each data

record has a key. Records are ordered more or less sequentially on the key

value. Records may be accessed sequentially using the qLeued access tech-

nique or they may be accessed directly using the basic access technique. A

record may be removed, added, or changed in size by using the basic access

technique. The access method will automatically move otner records as

necessary to recover any gaps left by the removal or reduction in size of a

record.

Again IBM documentation is not too clear, but it appears that the basic

unit of information is the keyed record and toe block, if it exists at all, is

used only internally by the access methods. We s;iall assume here that blocks

do not exist.

7.5.1 Records

7.5.1.1 Format 1'

Suppose LRECL n

a
DK RE

tke yn

With symbol f~ey FIX and equivalence

/99

99

7.5.1.2 Format V

n

key

with symbol and equivalence.

/ I
I /

N /

7.5.2 Tracks and Cylinders

While the user is to some degree shielded from the fact, tracks and

cylinders play a fundamental role in the organization of indexed sequential data
sets. Their precise meaninq varies from device to devi ;e, but roughly speak-

ing a track is a fixed ntrmber,ýf jat& words which can he accessed sequentially

and1 a cylinder is a fixed number of records such that the overhead involved in
sw-tchlng between two tracks in .he same cylinder is less than the overhead

involved in switching between cylinders. The important fact here is that the

number of data words on a track and the number of tracks per cylinder is fixed
for a given device and varies from device to device.

To expedite locating a record w'ith a given arbitrary key several levels
of indexing are provided. At the Jowest level is the track index, of which there

is one per cylinder. For every prime data track (to be defined later) there are

two entries in the track index. The first entry is the highest value key on that

track. The second is the highest value key of any entry assigned to that track

but stored in the overflow area.

The data set also containF a cylinder index with one entry per cylinder,

giving the highest key value of any record on that cylinder.

100

If the cylinder index is so large it covers more than one track then a
master index is created. There is one entry in the master index for each track

of the cylinder index and this entry gives the highest value found on that track.

For extremely large data sets it is possible to create even higher level
indexes. As they add nothing conceptually new we will not model them here.

7.5.3 Tracks

There are two types of tracks in an indexed sequential data set: prime

data and overflow.

A prime data track is a sequence of records in ascending order by key
v a lu e : -C-__-_ _

0

The total length of all records on the track must not exceed some limit set by

the device, say TRKLEN.

Overflow tracks are much more complex. At the level of detail we have

been using up to now an overflow track has the following template:

T TT E

Y] 0

kTT

where 'TT) is representative of any TT node on any overflow tra -k on this

cylinder, or the special node . The TT nodes are used to string over-

flow reco.ds into lists.

The indexed sequential access methods contain some relatively complex

code which uses all of the overflow tracks to maintain one overflow record

string for each prime data track on the cylinder. The specific algorithms used

to allocate space and maintain the strings are invisible to the user and are not

officially specified. Thus we cannot and should not include -n our model a

specific overflow track management scheme. We must replace the overflow

tracks b? overflow lists.

TR

TB TE

0 0

This is exactly the same template as for prime data tracks. Again the

keys are in ascending order. There is no fixed maximum size, however, as

this is dependent on the other lists. The arcs, while logically consistent,

now represent rather complex operations. Thus while it is possible to assign

average costs to these arcs, great variations from these averages can be

expected when the access metnod is actually run. We shall denote prime data

tracks as

P i

F

102

overflow tracks as

and overflow lists as [L
7.5.4 Cylinders

The physical tracks on a cylinder are divided into three areas. The
first track or so is used to store the track index. The bulk of the tracks are

prime data tracks. The remaining tracks are overflow tracks. If NPTRK is the

number of prime data tracks, a cylinder may be represented by

E- P

a ii£

CE

E1

The value of a TK node is the highest value key in the attach(,;d track

or overflow list. The overflow key must be higher in value than Cie prime key.

Furthermore, the prime key of one prime track must be h1.#her than the overflow

key of the preceeding prime track. tny D or [fJ may be replaced

by the node @, signifying an empty list or track. The TX node for an

empty list or track has value -1, one less than the smallest possible key value.

We shall denote a cylinder as

with equivalence

4 4

7.5.5 Data Sets

An indexed sequential data set consists of one or more levels of

master index (not modelled here), one or more cylinders of data, and option-

ally one or more cylinders of independent overflow area. The independent

overflow area is used to contain overflows from cylinders whose overflow

tracks are full. Conceptually it adds an extra overflow list to each prime data

track:

104

%-L

Y

E

As it adds nothing new conceptually, we shall not model it here.

An indexed sequential data set has the form

I ,CYL

I I

Vl E)

where NYCL is the number of prime data cylin'lers. ThE value of an MI node is

the highest key found on the associated cylinaer, or -i if the cylinder is

empty. Successive non-negative MI values must be in ascending order.

7.5.6 Queued Indexed Sequential Access Metnod (QISAM)

Although we will presenL liere QISAM and BISAM separately, neither is

really a self-sufficient access method. To create, access, and maintain an

indexed sequential data set it is usually necessary to use a mixture of both

access methods. We quote from the IBM System/360 Operating System:

Supervisor and Data Management Services manual (C28-6646-2) p. 137:

"Although the queued and basic access techniques can be used to pro-

cess an indexed sequential data set, each has separate and distinct functions.

The queued access technique must be used to creae the data set. It can also

be used to process or update the records. Onxx Ce basic access technique

can be used to insert new records between records already in the data set. It

too can be used to read the data ket or update records. However, you may add

new records to the high key end of the data set v ;ing the queued access

method."

While it isn't all that clear exactly what happens, it appears tbat the

queued access technique writes records only In prime data tracks while the

basic access technique always causes records to be written into th'. overflow

tracks, either directly or by displacement from the prime data tracks. Thus il

the basic access tecnnique were used to create a data set, all of the records

would be written into the overflow tracks.

ITe commands ,4vailable in the queued access technique are GET, PUT,

SETL, and ESETL.

7.5.6.1 SETL. ESETL

SETL allows the user to select a point other than the beginning of the

data set to start sequrntial retrievwl of records. It can only be used while

reading. SETL takes as crgument a ke', a key prefix, or an absolute track

106

address. A key prefix has fewer characters than a key. If a key prefix is

given, ESETL will find the first key in the data set with the same initial char-

acters as the key prefix. After a SETL, subsequent GET instructions will

retrieve records sequentially starting from the record selected. If SETL is to

be called more than once, all but the first must be preceded by a call to

ESETL. ESETL destroys the look-aheid buffers and other machinery set up by

SETL. It places the data set in some sort of 1 .mbo which the manual doesn't

bother to define.

,5.6.2 .EPUT. PUTX

It is possible to access an indexed sequential data set in input,
output, or update mode. In input mode, only GET is allowed. In output mode,

only PUT is allowed. In urdate mode GET and PUTX are allowed. PUTX will

couse the record referred to in the most recent GET statement to be replaced

by the record given to the PUTX statement.

7.5.7 Basic Indexed Sequential Access Methb d__BISAM)

BISAM is set up in such a manner as to simulate direct access of
records, using the record key as address. It is possible in update mode to
WRITE the record most recently READ, but other than this the system makes no

use of information about the current record ir, determining the next record.

The commands possible under BISAM and READ, WP.TE, and CHECK. The IBM

Supervisor and Data Management Services manual (C28-6646-2) contains

(p. 102) some self-contradictory nastiness about using WAIT instead of

CHECK, but we will ignore this.

7.5.7.1 READ

READ takes as argument a key, and returns the record having that key.

There are two modes, K and KU. In mode K nothing additional happens, but
in mode KU the physical address of the record is placed in the DEGB. A sub-

sequent WPITE command using thr same DECB will cause the record to be

updated in place.

10)7

7.5.7.2 WRITE

While READ causes nothing more than the access of a record, a WRITE

command has much more far reaching effects, There are two modes for WRITE,

K and KN. Mode K is used to update in place, and causes no changes in data

set structure beyond the bounds of the current rscord. It can have a later

effect, however, as the record update may have included the insertion of a

delete code. This is a byte of all ones (X'FF') as the first character of the

record. Such a record may be deleted if a subsequent WRITE in KN mode

accesses that trarjk.

Mode K requests require that the new record repldce an existing record

of the same key. Mode KN requires that the key of the record to be written

not already exist in the data set. If the key of the 'Lew record is higher than

any key presently in the data set, the record is added to the overflow list of

the last prime track currently used. In all other cases the new record must be

placed between two already existing records. If the new record must go on an

overflow list, it is simply written there and the list pointers adjusted accord-

ingly to string the new recora into the proper location on the overflow list. If

the record must go between two "ecords already on the same prime t'iack, how-

ever, space must be made on the prime track for it. This is done by moving
all records on that prime track with higher keys than the new key up a

sufficient distance to accomodate the new record. This will in general force

one or more records off the end of the prime track and onto the overflow track.

The access method will do this automacically. If a record which is for:'ed off

the end of a prime track contains a delete code, it will not be written onto the

overflow list but will simply disappear.

108

8. CDC SCOPE ACCESS METHODS

The Control Data Corporation SCOPE operating system for the CDC

6400, 6500, and 6600 computers offers a comriete access method for second-

ary stocage. Compared to the IBM access methods, it offers a smaller number

of file structures, but a larger number of ma.,ros for access. There is no

d.stinction between blocks and records. The atomic unit of data is a six bit

character. The smallest unit of transaction with external devices is the

physical record unit or PRU. This is a fixed length string of characters, with

the length determined by the charac~eristics of the specific device used. A

logical record consists of one or more physical recor- units, with the last PRU

truncated or zero length. A truncated or zero lezgth PRU contains a flag

signalling the end of data. Depending on the flag used, a truncated or zero-

length PRU signifies the end of a logical record, the end of a file, or the end

of a volume.

Compared to OS/360, the SCOPE system offers a much simpler buffer-
ing scheme. The sole interface between the program and the 1-0 device is a

circular buffer. This is a block of contiguous memory within the user program

which is treated as if the first location immediately followed the last, forming

a ring.

SCOPE supports only two data structures, corresponding roughly to

OS/360's sequential and indexed sequential. As with OS/360, sequential

files may be accessed either forward or backward, i. the I-0 device allows it.

This description was originally written using a manual for SCOPE
version 3.1.6 of November 1969. It was later updated to conform with SCOPF

version 3.3 of February 1972. Our description does not include SCOPE Indexed

Sequential, which was added between versions I and 3 and which is appar-

ently a separate prcgram package which uses ordinary SCOPE data management

as a base. It would be quite interesting to compare it with IBM Indexed

Sequential.

109

8.1 SCOPE Access Method Elements

8.1.1 Character

There are two basic data forms in SCOPE: display code and binary.

The smalle'st unit of data is six bits wide and corresponds to one display code

character or two octal digits. We will denote a character by

8.1.2 Physical Record Unit PRU)

This device dependent quantity is the smallest unit of transaction

between the access method and the device. For any given device there is an

n such that

FF

n-1

represents a PRU for that device. We assign, tiiL. the macro

n

where [represents the first node and 7 the last node.

8.1.3 Truncated PRU

Less than n words of data may be stored in a truncated PRU. This

contains t words of data, where l< t< n-8, and an end flag:

110

FFýo
~±LZ t- 1

A may be any one of 16 types, corresponding to levels 0-15: LO, Li, L2,

L15. We give this the macro symbol

EL7
8.1.4 Zero Length PRU

A zero length PRU contains only the end flag. It is represented by

and has macro . Truncated and zero length PRU's are used to

delimit logical records and files. Node type L15 is reserved for an end-of-

file mark:

Eli570

8.1. 5 Loqical Record (SCOPE Standard)

A logical record consists of zero or mote full PRU's followed by a

truncated or zero length PRU:

form=O [0,q7

F -7 F
or for m 0) n -E~2 =i

m - 1

?J 11!

This is given the macro symbol

17m ,n, I,=,q

A way not be Li5. If k = L14 the record will receive special treatment ny the

checkpoint dump program of SCOPE.

8.1.6 Nonstandard Tapes

SCOPE offers -ome facilities to enable a nonstandard tape to be

a-ccessed. This allows tapes to be sent to or received from other operating

systems, telemetry equipment, and the like. It also provides compatibility

with earlier versions of SCOPE. We will describe tL'ese special tape formats,

but will not attempt to make programs using these formats transferable, at

least not at the moment.

8.1.6.1 Type S (Stranger) Tape

Sm m must be even and < 5120

m-2

with the following equivalence
b

a .

where

a is the first type D tode

b is any no, a

c is the RE node

112

8.1.6.2 Type L (Long Record Stranger) Tape

' Li m m must be even

2

with equivalence
b

a Fc

where

a is the first D node

b is any node

c is the RE node

8.1.7 Circular Buffer

This is a block of contiguous memory locations within the user pro-

gram's address space. It is described by four registers: FIRST, OUT, IN, and

LIMIT. The buffer begins at the address in FIRST. LJMIT is the first address

beyond the end of the buffer. The two registers OUT and IN partition the

buffer into two regions, data and garbage. OUT and IN satisfy the following

constraints:

FIRST C CUP< LIMIT

FIRST • IN < LIMIT

If OUT IN then the whole buffer is garbage. If OUT < IN then the

region from OUT to IN -1 is data and the rest is garbage. IF' OUT -, 1N then

the, region from OUT to LIMIT -i and the region from FIRST to IN -I contain

data and the rest is garbage. These relaLions may be described graphically as

follows.:

I113

LIMIT -- •LIMIT

IN garbage OUT / /

0)UT aI/// IN 1 garbage

FIRST- garbage FIRST--i,

The buffer size m = (LIMIT-FIRST) must be sufficient to contain at

least one full PRU and preferably several.

8.1.8 WriteA PRU

We will use a template transform to describe the process of writing

PRU's. The commands will be

XFORM FP

for full PRU's of length n, and

XFORM TP (2,q) 0: 1 5, 0 -5q -sPRUSZ

The covering templates for these transformations will be specified as

the need arises. Any covering template, however, must have in its name a

positive integer valued parameter PRUSZ. It should be noted that the transform

TP(ý ,q)

is not a single transform but rather a shorthand for 16 (PRUSZ + 1) functions.

FP or any one of the TP(',,q) is a triplet of functions. The first and

third functions specify which parts of the data structure remain invariant, and

the second function defines the part that changes. if we let
FP = (VP1 , P2 , FP3) and TP(Q,q) (TPLQ 1, TPLQ 9 , TPLQ 3) we may define

the transformations as 'oilows:

114

8.1.8.1 FPl2 , TPLQ 2

The current state must have an exit arc labelled F. While the transform

doesn't require it, the current state should be of type RE, ER, or PND and the

state reached from the current state along the F arc, which we will call the F

successor, should be of type D or LO, Li, ... , L15.

FP2 breaks the F arc between the current state and its F successor

and puts a full PRU in its place. We will describe this graphically as follows:

N• F

Similarly TPLQ 2 inserts a truncated or zero length PRU of level L:
F

8.1.8.2 IFI, FP3 , TPLQ 1, TPLQ 3

As should be evident from the above, all nodes in any graph of the

covering template are passive, and the only structural change consists of the

addition of a PRU between the current node and its F successor.

8.1.9 XFMTPL P,

This is a special form of XFORM TPLQ keyed to the circular buffer.

Let q = ((IN-OUT) mod m), the number of data words in the buffer. If

q> PRUSZ -6 there is an error. Otherwise XFMTPL selects and executes

XFORM TP(£ ,q)

I 15

8.2 Forward Sequential File Structure

There are three basic file structures allowed in SCOPE: forward

sequential, doubly sequential, and indexed. SCOPE does not explicitly dis-

tinguish between forward and doubly sequential but, for reasons stated before,

we feel it is important to do so.

A forward sequential file has the following form:

NRLF
F0 F- F1

BF R(L15,O0

L_ L 0j I-. 0 tL _j1

When the file is opened the current node will be the first node of the

first record of the first reel, i.e., the node reached from node BF by executing

MOVEH NRL, MOVEH F. Note that there is at least one reel, that the end of

file indicator is a zero length PRU of level 5, that the head refuses to move

past the end of file, and that rewind applies only to the current reel and can

be performed at any time.

8.3 Doubly Sequential File bL'ucture

The SCOPE system does not appear to provide any facilities for reading

or writing backward. On devices capable of reading or writing backward, how-

ever, SCOPE does provide the ability to space backward a number of PRU's, a

number of logical records, or to the first logical record with level equal to or

higher than a particular level number. This requires that SCOPE read the file

backwards in order to find logical record ends and level numbers. Thus we

must include in our file structure a mechanism for reading backward, even if

the user program is not allowed to employ it. Thus the doubly sequential form,

is as fcllows:

116

8.3.1 PRU

template

D n macro

8.3.2 Truncated PRU

N template

macro

8.3.3 Zero Length PRU

ýF tern plate

D macro

117

8.3.4 Logical Record

template

D 0,0 ,,q macroB B
D D n D A,q template

D m,n,3,q macro

8.3.5 File

F' Dm*i,n,k*i,q*i DL15,0_J i=1

8.4 Random Access File Structure

A random access file consists of a number of logical recorus and a

fixed length linear di:ectory. Each directory entry can be accessed by its

fixed nonnegative integral index. A directory entry may be null, or may con-

tain the absolute address of a logical record. It may also contain an alpha-

numeric key for that record.

S~118

It is possible for the user program to position the read/write re3d at

an absolute location and thus perform absolute addressing of a random access

value. Any program that utilized this would perforce become tied to a given

random access device type, and even to a given distribution of files on that

volume. We will not attempt to make such programs transferable.

In order to make the user program independent of absolu,, addresses,

SCOPE provides facilities which maintain the directory for a given file and

translate user references to record indexes or keys into absolute addresses.

We will assume that the user program employs these facilities exclusively and

never refers to absolute addresses.

SCOPE random access is a form midway between IBM indexed sequen-

tial and partitioned data formats. Like indexed sequential, a random access

file is composed of a sequence of logical records, which may have keys. Like

a partitioned data set, however, there is an index containing pointers to each

record. If the records have keys, these are in the index. Only one directory

entry may point to a given record. The directory is fixed in length, and an en-

try for a particular record does not move about relative to the dtrectory origin.

We may now represent a SCOPE random access file as:

rr

F BFe A

S DI Y
AF

A N
___ _ _ I

-Ii..)O ____________________

LAll

1j1n

n = 2 implies records with keys, n = 1 implies no keys,

La.stands for I

where nam is any legal character record key

with equivalance

8.5 SCOPE Abstract Machine

The SCOPE abstract machine for data management, like that of IBM

08/360, has two parts, a buffer handler and a data access machine. These

two facilities are in a sense orthogonal, in that all communication between

them is restricted to their common access to the circular buffer and the four

registers FIRST, IN, OUT, and LIMIT which control thu buffer. Thus in order

to show the equivalenecy of two abstract machines for data management we need

to show only that their buffer managers and data access machines are

separately equivalent.

The abstract machine is defined and controlled for any particular file by

its File Environment Table (FET) and by an entry in the File Name Table (FNT).

Some of this information, such as absolute disk addresses and Qevice depen-

dent status codes, should never be directly accessed by a program using a

SCOPE access method. Whenever possible, these fields will not be mentioned

here. Some fields, such as the code and status (CS) field of the FET, contain

a mixture of information which should be used and information which should

not. We will describe only the parts of such fields which the user program

should access, and simply state that the field also contains other data.

8. 5. 1 File Name Table (FNT)

This is a system table and is protected from user program access. It

contains an entry for c-ery file attached to a control point. The following

fields are of interest, not bocause they are accessible to the user but because

of what they imply in terms of access method internal structure.

120

8.5. i. I Equipment TY

This is set by the system when the file is assigned to a particular

device. The user may make a complete or a partial specification of device

type and the system will select a device that satisfies the specification. The

DT field of the FET is updated from this field every time an I-0 command is

executed.

8.5.1.2 Last Code and Status

This contains the code and status (CS) field of the FET as it appeared

at the completion of the most recent command. This is the field :;hecked by

the instruction IF LAST MACRO WAS '< name>', which we invented in order

to describe WRITE.

8.5.2 File Environment Table (FET,

The FET is in user memory and is the principal interface between the

data management routines and the system. User programs should be very care-

ful about directly accessing the FET, as it contains interral status information

for the data management routines. The fields of interest to the user are:

8.5.2.1 Logical File Name (LFN)

8.5.2.2 Code and Status (CS)

Not to be altered by the user.

8.5.2.3 Device Type (DT)

Thaj contains the device type code as copied from the FNT. Device

types are so struclired that they contain encodements of the following two

template name parameters:

8.5.2.3.1 DT.GRP = 1 mass storage device

S 2 tape

S3 other (telecommntications or unit record)

121

8.5.2.3.4 DT.DN - device name.

8.5.2.4 R - bit

If R = 1 the file is in random indexed format, and if R 0 it is in

sequential format.

8.5.2.) Release bit

This causes records to be released after a forward skip or read.

8.5.2.6 UP bit user processing at end of reel

UP = 0 automatic end of reel processing

UP = 1 return to user if end of reel encountered

8.5.2.7 EP bit error processing bit

EP =1 return to user if error encountered

EP = 0 kill job if error encountered

8.5.2.8 Disposition Code (DC) - Specifies disposition of file after CLOSE

8.5.2.9 PRUSZ physical record unit size

8.5.2.10 RBSZ record block size. Number of PRU's in a physical

record. Not useful to user prograin.

8.5.2.11 FIRST, IN, OUT, LIMIT - registers for circular buffer

8.5.2.11.1 WSA - registers defining a working storage area

8.5.2 .12 (S or L tapes only) UBC - unused bit count. This is used to

indicate the number of garbage bits in the low order part of the last data word

in the circular buffer.

122

8.5.2.13 (S or L tapes only) MLRS - maximum logical record size.

8.5.2.14 (random files unly) record request/return - not to be accessed by

user,,

8.5.3 SCOPE Buffer

The buffer is defined 0,K, four registers: FIRST, IN, OUT, and LIMIT.

These are discussed in sectli• ra 8.1.7 of this paper. We will define here five

primitive operations on these registers. Let m = (LAST-FIRST).

8.5.3.1 CLEARBUFF
i) sets OUT = IN

8.5.3.2 ON BUFFULL GOTO

where S is a statemel• label

i) branches to S if ((GUT-IN) mod m) = 1

8.5.3.3 ON BUFCLR GOTO S

i) branches to S if OUT=IN

8.5.3.4 READN

i) put contents of current node into @ IN
ii) IN .- FIRST + ((IN - FIRST + 1) mod m)

8.5.3ý5 WRITEN

i) put contents of @ OUT into current node

ii) OUT.- FIRST + ((OUT - FIRST + 1) inod m)

8.5.3.6 ON PRUNFIT GOTO S

i) branches to S if ((OUT-IN) rod m) -.5 PRIqZ

8.5.3.7 ON NPRUBUF, GOTO S

i) branches to S if ((IN-TO) mrod m) - PRUSZ

123

8.5.4 RDPRU Read One PRU

Because of its importance, we will define a separate macro for the

process of reading one PRU into the circular buffer.

RDPRU MACRO ¢1, MTRLT, ýTREQ, MTRGT

$S1 REFDN

MOVEH F

ONNODE (DELSE) GGTO (¢Sl,NEXT)

ONNODE (PND:ELSE) GOTO (€S3, NEXr)

ONNODE (LO, ELSE) GOTO (€ TRLT1, NEXT)

ONNODE (L1,ELSE) GOTO ('•TRLT1,NEXT)

ONNODE (L(1-l), ELSE) GOTO (¢TRLT1,NEXT)

ONNODE (L¢1,ELSE) GOTO (MTREQ1, NEXT)

ONNODE (L(¢£ + 1),ELSE) GOTO (¢TRGTINEXT)

ONNODE (Li5, ELSE) GOTO (¢TRGTI,ERROR)

'TRLT1 MOVEH F

GOTO MTRLT

MTREQ1 MOVEH F

GOTO ýTREQ

MTRGTI MOVEH F

GOT'O CTRGT

€S3 NOOP

RDPRU MEND

RDPRU works quite unambiguously whenever the current node is the

first type D node of a PRU and it is known that the circular buffer has space
left for at least one PRU. We will use RDPPU only under these conditions. It

should be noted, however, that PRU's have physical significance as a

124

hardware unit of transaction and that normally all of a file will be in the form
of PRU's, inclucidng tape labels and random access directories. Thus one

might object that our restrictions on the use of RDPRU are too severe. It

should be noted, however, that SCOPE does not explicitly commit itself to a

paitlcular format for '..ie PRU encodement of its file labels and indexes. If we

fixed into our model the particular encodement that now obtains we would in

effect be binding SCOPE to that encodement. This overspecification would

make SCOPE harder to improve and less flexible.

8.6 SCOPE Data Access Macros Useable On Sequential Files

8.6.1 READ

When READ is called the current node must be either the first node of

a PRU or the end of the file.

READ MACRO

€S2 ON PRUNFIT GOTO €SI

RDPRU 0, ¢Sl, €SI, ¢SI

GOTO €S2

€Si NOOP

READ MEND

8.6.2 READSKPt

READSKP functions like READ except that if the circular buffer is filled

before a record end is reached or if a record end is reached which is less than

k the virtual head is moved forward either until just after the first record end

with level equal to or greater than £ cr until the end of file is reached, which-

ever happens first. It should be noted that since the end of file indicator is a

zero-length PRU with the maximum possible level, the two cases amount to

the same thing.

125

READSKP MACRO ýLEV

€S2 ON PRUNFIT GOTO €SI

RDPRU 'LEV, €S1, €S3, €S3

GOTO €S2

€S1 SKPRU CLEV, 0S1, ý33, 0S3

GOTO 0S1

FS3 NOOP

READSKP MEND

where SKPRU is exactly like RDPRU except that READN is replaced by NOOP,

and where MLEV is an integer from zero to 15 inclusive.

8.6.3 WRITE

This causes full PRU's to be written out from the circular buffer until

the buffer no longer contains enough data fur a full PRU.

WRITE MACRO

0S2 ON NPRUBUF GOTO €AROUND

XFORM FP

CSl MOVEH F

ON NODE (D,ELSE) GOTO (NEXT,€S2)

WRITEEN

GOTO ¢Sl

WAROUND MOVEH F

WRITE MEND

8.6.4 WRITER

This is like WRITE, except that when the circular buffer contains less

than PRUSZ number of words a truncated or zero-length PRU is written out

with appropriate level.

126

WRI',`ER MACRO €A

¢S2 ON NPRUBUF GOTO WAROUND

XFORM FP

€S1 MOVEH F

ON NODE (D,ELSE) GCTO (NEXT, ¢S2)

WRITEN

GOTO €S1

4AROUND XFMTPL 0

€S3 MOVEH F

ONNODE (D,ELSE) GOTO (NEXT,¢DUN)

WRITEN

GOTO $S3

¢DUN MOVEH F

WRITER MEND

8.6.5 WRITEF

WRITEF operates differently depending on whether or not the SCOPE

1-0 command most recently performed was WRITE. This requires an addition

to the SCOPE abstract machine. We need a register, LSTMKRO, which con-

tains the name of the last SCOPE macro issued. We will test this register by

the instruction

IF LAST MACRO WAS '(name)', GOTO

where < name> is the last name of the last macro issued.

WRITEF MACRO

ON BUFCLR GOTO €S1

WRITER ý'

GOTO CWEOF

Sl IF LAST MACRO WAS 'WRITE', GOTO MS2

GOTO MWEOF

¢S2 Xý'ORM TPLQ(g,g')

¢WEOF XFORM TPLQ(15,O)
WRITEF MEND

127

8.6.6 SKIPF nt

First, define a simpler form, SKIPiF L, as follows

SKIP1 F MACRO €A

€S1 SKPRU €A, MS1, €S2, €S2

GOTO €SI

€S2 NOOP

SKIPIF MEND

SKIPF is then

SKIPF MACRO n,

[SKIPIF
ýn times

SKIPIF

SKIPF MEND

8.6.7 SKIPB - Skip Backwards

Needless to say, this command is legal only for doubly sequential data

structures. To define SKIPB, we will use a macro

SKPRUB n, SIT SEQ, SGT

This uses MOVEN B to space backward until a type PND, BRL or BF

node is reached. Control will exit from SKPRUB as follows:

- Next sequential instruction if no level node was found

- SLT if a level node Li was found and i < n

- SEQ if Li was found and I = n

- SGT if Li was found and i > n

128

The next intermediate s :age is SKIPIB

SKIPIB MACRO €A

€S1 SKPRUB €t, €S1, €$2, €$2

GOTO CSl

€S2 SKPRU 0' €$3. €$3, 9$3

€S3 NOOP

SKIP1B MEND

SKIPIB is then

SKIPB MACRO •n, ¢.eI SKIPiB ý
4n times

SKIPIB €1

SKIPB MEND

8.6.8 BKSP

This causes the read to be backspaced one logical record. It is

equivalent to

SKIPB 14

8.6.9 BKSPRU

BKSPRU MACRO

sSI SKPRUB 0, €$2, M$2, €S2

`S2 SKPRUB 0, ¢$3, €S3, €S3

¢Sn SKPRUB 0, ¢S(n + 1), ¢S(n + 1), ¢S(n I)

¢S(n + 1) NOOP

BKSPRU MEND

In other words, space backwards n PRU's.

129

8.6.10 REWIND. UNLOAD

It is not at all clear how REWIND and UNLOAD differ because it is not

at all clear just how d rewind affects a file. We will for the moment ingnore

LNLOAD, saying that it is similar to REWIND. REWIND is as follows:

REWIND MACRO

MOVEH R

MOVEH F

REWIND MEND

8.6.11 RPHR. WPHR

These read or write one PRU of 512 words on SCOPE standard magnetic

tape only. RPHR clears the circular buffer before reading a PRU, •WPHR clears
the buffer after writing a PRU. READ and WRITE could be used to accomplish

practically the same result, and we will not discuss RPHR or WPHR further.

8,6.12 READI. ,

READN is a nonstop read and can be used only on type S or L tapes.

Because of its limited applicability we will not discuss it here. It is worth

noting, however, that SCOPE adds to the beginning of the record in the

circular buffer a header giving the record length. SCOPE, of course, must

wait until it reaches the end of the record to generate this information.

8.6.13 READIN

READIN has three forms, differing in the parameter supplied. The

no-parameter form can be used on a sequential file. The other two forms are

restricted to indexed files. READIN transfers data from trie circular buffer to

a secondary buffer ralled the working storage area. This is conceptually not

a data access function but rather a program level subroutine which happens to

call on the data management routine. We shall therefore discuss only how

RI;AD1N calls on the datd manag,.ment routine and not attempt to define what

a working storage area is.

130

READIN attempts to fill the working storage area from the circular

buffer. It will call READ if in the process of doing this it finds the circular

buffer empty.

8.6.14 WRITEN

This is similar to READN. It is for S and L magret.c tapes c'-.y.

Records placed in the circular buffer will be written out. A header a,,ust pre-

cede each record indicating that record's length.

8.6.15 WRITOUT

This is similar to READIN. The no-parameter form is supposedly usable

on sequential files, but the description is contradictory: a WRITOUT n.dy be

issued only if there is a "current record"; a "current record" exists only if a

WRITOUT has been issued. There is throughout the SCOPE manual great

ambiguity about what the "current record" is. As READIN and WRITOUT are of

marginal usefulness for sequential files anyway, we won't describe them

further in this section.

8.6.16 REWRITE. REWRITER Z, REWRITEF

These may be used only on mass storage files, either sequential or

indexed. They cause PRU's to be rewritten starting from the current head

position. Any information contained in the old PRU's is lost, including end

of record and end of file information. For instance, if a full PRU of a multi-

PRU record is rewritten as a truncated PRU, the original record will have been

split into two records. REWRITE will also blithely write over indexes and

labels. SCOPE warns against this and promises unpredictable results. As we

discussed in the section on RDPRU, we will not guarantee that our unpredict-

able results mdtch SCOPE's unpredictable results when restrictions are

vioJated.

131

In order to define REWRITE we need some new transformations:

XFORM RFP

XFORM RTP (9,q) 05-9515, 0-q-5PRUSZ

XFORM REF

The current head position must be at the first node of a PRU. This PRU

will be replaced by a full PRU if XFORM RFP is called and by a truncated or

zero length PRU of length A and level q is XFORM RTP (1,q) is called.

XFORM REF replaces the current PRU by an end of file PRU. Because of the

special way end of files are handled, REF/RTP(15,0). Instead, all of the file

from the current node to the end is deleted and a new end of file PRU appended:

F

F -T
1~ rL15riT~ , 0L715O

The PRU's cdeleted still exist on the storage volume. Since they now

belong to no file, they are not legally accessible however.

REWRITE is just like WRITE exc" -t that XFOPM FP is replaced by

XFORM RFP:

REWRITE MACRO

€S2 ON NPRUBUF GOTO €AROUND

XFORM RFP

€Sl MOVEH F

ONNODE (D, ELSE) GOTO (NEXT,€S2)

WRITEN

GOTO ¢Sl

€AROUND NOOP

WRITE MEND

132

For REWRITER, we need a new version of XFMTPL, namely XFMRTPL 1.

This verifies that the date, if any, in the circular buffer will fit in a truncated

PRU then executes

XFORM RTP(L ,q)

where q = ((IN-OUT) mod m)

R1VWRITER is then:

REWRITER MACRO

€S2 ON NPRUBUF GOTO MAROUND

XFORM RFP

€S1 MOVEH F

ONNODE (D,ELSE) GOTO (NEXT,€S2)

WRITEN

GOTO €81

€AROUND XFMRTPL

¢S3 MOVEH F

ONNODE (D,ELSE) GOTO (NEXT,¢DUN)

WRITEN

GOTO $S3

€DUN MOVEH F

REWRITER MEND

REWRITEF is simply

REWRITEF MACRO

XFORM REF

REWRITEF MEND

8.6.17 WRITIN

This is similar to WRITOUT except that where WRITOUT would use a

WRITE, WRITIN would use a REWRITE.

133

8.7 Macros and Transforms Usable on Random Access Files

8.7.1 XFORM DELREC

This transform is used to delete a record in a random access file. The

covering template is TRA(n,m) that is, the general random access template
with a definite choice made between named (n = 2) or numbered (n = 1,,

records and with a definite number (m) of directory entries. The current node

must be of type DI or DIN.

8.7.1.1 DELREC 2

F

ZB

N'IL

Which means tnat the current state-, which must be pointing either to a
record or to a DNIL node, is made to point to a DNIL node.

8.7.1.2 DELREC1 , DELREC 3

Most of the file structure remains unchanged. The DNIL node or

record which is the F successor of the current node is deleted, and all arcs

exiting from that node or record are deleted. In its place a new DNIL node is

substituted. This node is the F successor of the current node. The current

node is made the B successor of the DNIL node, and the FS node is made

the RS successor of the DNIL node. No other nodes or arcs are dffected.

134

8.7.2 READ, READSKP, READNS, WRITE, WRITER, WRITEF

These commands are designed for sequential files. Because SCOPE

random indexed records are the same as sequential records, these commands

may be used to continue reading or writing a record once it has been located
in the index. They may also be (mis-) used to read or write past the end of
the current record, with unpredictable results. This is certainly to be dis-

couraged in a transferable system.

8.7.3 READIN, READIN !name/, READIN m

As discussed in the section on sequential files, READIN is more a

user program subroutine than a data management macro and we will discuss

only how it uses more basic data access macros. READIN moves data from

the circular buffer to a secondary buffer called the working storage area and

calls READ if the circular buffer becomes empty before this transfer is

compLete. If the parameter /name,' or the integer is specified the current

head position will be moved to the beginning of the corresponding record, the

circular buffer will be emptied, and a READ will be issued. We will give

macros here which will search the index and position the head.

DEXNAM assumes a keyed index format. It uses the special command

COMPNAM nam, ST, SF

where name is a 7 character name, and ST and SF are statement labels. The

current node must be of type DIN. If nam matches the current index key,

control will pass to statement ST, otherwise control will pass to SF.

DEXNAM MACRO CNAM

MOVEH Q,-

,S1 MOVEH A

ONNOiE (DIN) GOTO (NEXT)

COMPNAM ¢NAM, NEXT, MSI

SDEXNAM MEND

Note that the ONNODE instructioi, will force an error if the name is not found.

135

DEX m for in a nonnegative integer is not a single macro but rather a

set of macros: DEXO, DEXI, ... where DEXM m stands for DEXm.

There are two basic forms:

for m = 0 DEXO MACRO
MOVEH A

DEXO MEND

and for m > 0 DEXm MACRO

MOVEH RS

MOVET A

m time s

kMOVEH A

DEXm MEND

Now that DEXNAM and DEXM have been defined, we can say that

READIN /name/ calls DEXNAM /name/ and READIN m calls DEXM m before

issuing a READ.

8.7.4 WRITOUT, WRITOUT /name/, WRITOUT m

This is the companion to READIN. WRITOUT will clear the circular

huffer, transfer data from the working storage arr.a to the circular buffer, and

issue a WRITE. WRITOUT m will call DEXM m before issuing the WRITE.

WRITOUT /name/, however, apparently does not call DEXNAM /,name/. In

fact it is quite unclear from the manual just what it does.

8.7.5 REWRITE REWRITERA, REWRITEF

Just as with READ, READSKP, etc., these three commands may be used

at any point in a random indexed file. If a programmer .nakes direct ,:-" ot

these cornrrands, however, he must make certain that he does not damage the

indexed 3tructure. WRITIN is a user level suroutine that uses REWRITE (R,F)

in a iranner consistent with the indexed file structure. For transferable pro-

grams, we would not recommend direct use of REWRITE on random indexed files.

1 36

8.7.6 WRITIN, WRITIN name/, WRITIN m

WRITIN is like WRITOUT, but with two differences. First WRITIN calls

REWRITE whenever WRITOUTT would havc called WRITE. Second, WRITIN

/aame/ does call DEXNA.vI /name/ before issuing the REWRITE.

8.8 File Structure Ten.olates

Earlier we defined templates separately for each SCOPE file structure.

It will bE instructive to fit these templates into a template name grammer. We

can then descrirte the process of specifying file structure as a series of

REFINE TEMPLATE commands.

The most general template name is SFILE. This contains all legal

SCOPE file structures. It has only one explicit parameter, R, which can take

the values 0 or 1. It is stored in the r bit of the FET. The two possible

refinements are then:

(SFILE, R = 0) = SEQSF

seque:tial SCOPE file

(SFILE, R = 1) = RISF

random indexed SCOPE file

Here we have defined the alias names SEQSF and RISF, which may replace

(SFILE, R = 0) and (SFILE, R = 1), respectively, any place they occur.

R.SF has one eKplicit parameter, KEY, which can take on the integer

values 1 or 2 corre.',ponding to records with no keys and records with keys,

respectively. We will again develop aliases:

(RISF, KEY 1) = RISFNK

(RISF, KEY = 2) z RISFK

137

Both RISFK and RISFNK have the same explicit parameters: PRUSZ and LI. Both

take positive integer values. PRUSZ is a field in the FET and specifies the

number of characters in a PRU. LI is the number of entries in the index.

SEQSF has one explicit parameter, DT.GRP, which can take on the

values 1 2, or 3. It groups file structures by device type: 1 for mass storage,

2 for tape, and 3 for other types (mostly telecommunications and unit record).

(SEQSF,DT.GRP = 3) is not supported by SCOPE data management and will not

be considered further here. (SEQSF,DT.GRP = 2) has one explicit parameter,

DT.DN. This may take on the values S, L, and STD, with the following

aliases and meanings:

((SEQSF,DT.GRP = 2), DT.DN = STD) = STDTAPE

SCOPE standard 1/2" magnetic tape

((SEQSF,DT.GRP = 2), DT.DN = S) = STAPE

Stranger tape

((SEQSF,DT.GRP = 2), DT.DN = L) = LTAPE

Long record stranger tape

The device type, or DT, field of the PET contains an encodement of

DT.GRP and DT.DN.

(SEQSF,DT.GRP = 1) = MSEQ is a sequential file on a random access

mass storage device.

MSEQ and STDTAPE each have one explicit parameter, PRUSZ. STAPE

and LTAPE each have one parameter, MLRS. Both PRUSZ and MLRS are fields

of the PET.

138

9. HONEYWELL (GE) 600 GEFRC (GEneral File end Record Control)

9.1 Introduction

The Honeywell GEneral File and Record Control program (GEFRC) oper-
ates on any Honeywell 600/6000 series machine in cooperation with the
GEneral Comprehensive Operating Supervisor (GECOS). GEFRC provides input
output servicing in a simpler form than IBM OS/360 or CDC SCOPE. Although
simple in foim, GEFRC provides cornplete input/output service for all the
common peripheral devices such as unJc record equipment (card, printer,
paper tape), magnetic tape subsý stems, and disk and drum subsystems as
well as remote devices such as teletypes and batch remote stations.

Since the format of a file varies greatly with the type of device to

.vhich it is assigned, a Standard System Format (SSF) has been designed. For
certain devi,-es, the restrictions of the SSF are relaxed. FileF which use the
"SSF can be moved from any device to any other device within the system with-
out changing tht user's program.

In this chaptc.r we shall discuss the GEFRC file structure, the form of
various control blocks, GEFRC wufferirig, and the detailed i/o instructions
themselves- logical record processing, device positioning, physical record
processing, input/output -diting, and file preparation.

9.2 File Stnacture - Standard System Format

A Standard System Format (SSF) file is a sequence of zero or more
blocks (physical records) preceded by a header record and followed by a trailer
record. Under (ertair circumstances a file may be unlabeled; i.e., not have

header and trailer records. This is true for unit record equipment and may be

true for magnetic tape. An SSF block is variable in size, with a maximum of

320 words. The first word contains block serial number and block size fields.

Again, certain devices support fixed size blocks which do not have the block
serial number field. Their size is determined from the maximum block size
field of the fcb (see 9.3 below). An SSF record may be in one of three forms:

variable, fixed, or mixed. In all three cases, a record is a sequence of n

139

words; the only difference in the forms is the method used to determine n.

Variable length records are in fact of lennth n + 1. The first word is the

record size control word (RSCW), which contains certain control information

(file mark if size Is zero, logical record type fh)r media conversion, report

code) and the size, n, of the record. Fixed length records are of size n

where n is determined from the reccrd size field of the fcb. Mixed length

records are of size n where n is determined by invoking a user provided

routine to look at the record to determine its size. The address of this routine

is contained in the fcb. It may be observed that all three formats are really

special cases of mixed. In the case of fixed records, a system provided size

routine is called which determines the size from the fcb; in the case of vari-

able, a system provided size routine is called which determines the size from

the first word (RSCW) of the record. In all three cases the record is in a user

provided buffer rather than on the device itslef.

In the following sections we give the templates and macros for standard

system format records, blocks and files.

9.2.1 Records

A record may be fixed length, mixed length, or variable length.

9.2.1.1 Fixed Lenqth Records

ROE

n

where n is the same for all records in the data set. We shall denote this

template by

fin

1 40

9.2.1.2 Mixed LenQth Records

n

where n is determined by invoking a user provided routine immediately p-ior

to reading the record. We shall denote this tamplate by

9.2,1.3 Variable Length Records

where n is determined by reading the value in the size node. Note that a

variable length record could be read as a mixed length record of size n + 1 if

the user implemented a user routine to extract the number stored in the first

word of the record. Similarly, fixed length records could be read as mixed

length records. We shall denote the variable length template by

9.2.2 Blocks

A block is a linear sequence of records of one of the three types:

fixed, mixed, or variable. A b!ock mijy or may nct have block sequence

numbers.

141

9.2.2.1 Standard Block

A standard block contains a blo(,k size node an,' may be represented as

F1
SF >[m• - I])Ir,n~i•ii F

where m is the length of the block in words and r is f, m, or v. The block

contains i records of type r. For an r of f cr m, in*i=m. For an r of v,
7-(n+l)*i=m. For standard system format, m must be less than or equal t,

320. A GEFRC ýimit is m-54094. We shall denote the standard block template

by

9.2.2.2 Non-Standard Block

A non-standard block does not contain a block size node. The block

size information must be determined from the fcb, and is fixed in size for the

file.

F r n*i -F>@

This template may be denoted by

LNSBm _

where m is the record size and r the record type, as for standard blocks.

9.2.3 Files

A file is a linear sequence of either standard or nonstandard blocks.

A file may or may not have header or trailer records.

142

9.2.3.1 Standard File

F-~- binEAF RALE.

i=o

where b is either SB or NSB. The structures of HEADER and TRAILER are

given below. The template may be denoted by

9.2.3.2 Non-Standard File
/ \

R r
F FSF bmiF.>

where b is either SB or NSB, and EOF is physicai (device) end of file. The

template may be denoted by

9.2.4 Header and Trailer Labels

GEFRC includes a complete facility for processing standard labels and

for performing associated unit switching dt the end of magnetic tape reels.

The procedures included are specifically designed for the standard Case -Ind

as such will not peiiu:m label functions on nonscandard labels. We have not

attempted to model multi-reel files or multi-fije reels and will give only

verbal explanations for the appropriate routines,

Header and trailer labels are standard, 14 word blocks.

14

9.2.4.1 Header

word number format description

1-2 GEO600BTLW label identifier
3 xxxxxx installation identification

4 Xxxxxx tape reel serial number
5 Oxxxxx file serial number

6 ý,xxxx reel sequence number

7 Oyyddd creation date
8 $kxxx retention days

9-10 xxxxxx file name

11-14 (arbitrary) not used - available for

user program

9.2.4.2 Trailer

word number format description

1 ýEEORWV end-of-reel

or

$EOFVV end-of-file

2 xxxxxx block count

3-14 (arbitrary) not used

9.3 File Control Block

Like most file systems, GEFRC uses a file control block (FCB). The

FCB is a fixed format block of information about the file. This information

comes from various sources: the programmer when the FCB is set up, the file

control cards via the operating system (GECOS), the low level input output

system (IOS), and GEFRC itself. GEFRC uses another storage block, the file

designator word (FDW) to contain information about open and close options.

For our purposes we will ignore the existence of the FDW and assume that all

information about the file not contained within the file itself is contained with

the FCB.

144

The existence of the FCB in a form accessible to a programmer causes

serious problems in the accurate description of the system. Since fields of

the FCB are accessible and can be modified by a programmer, questions as to

the legality of such access occur. For example: consider a file with a

MAX-BLOCK of 400, a RECORD-FORM of FIXED and a RECORD-SIZE of 80. A

GET command retuirs a logical record of 80 characters. What happens if, on

the fly, the programmer changes the RECORD-SIZE field to 100? Three

possibilities come to mind: 1) the change is ignored, 2) GEFRC aborts with

a more or less cryptic error message, or 3) the logical record size changes

from 80 to 100. This type of question occurs because it is not clear from a

manual just when certain information is conveyed from the program (FCB) to

the file system. If the RECORD-SIZE field is looked at only at open time, then

a change will be ignored; if it is looked at with each GET, then it essentially

is an argument to the GET and the change to the RECORD-SIZE should take

effect.

We will attempt in our model of the file system to replace the FCB

completely with the template and appropriate refinements. If we succeeA, we

shall have a model of the file system which is hopefully easy to follow and

unambiguous and which may lead to quantitative analysis in the future. If we

fail, the failure should shed light on a) defects in the model, and b) warts in

the GEFRC file system. The goal is similar to the goal of those who build

models of programming languages: we are attempting to build an abstract

syntax for file systems and an abstract machine to perform operations on the

file system.

For reference, the more important fields of the FCB (and FDW) are

given below.

14,5

9.3.1 File Control Block

NAME symbolic name of file control block

FILE CODE symbolic name of file to link with control card

BUFFER 1 symbolic name of buffer, if not present implies
physical input/output only

BUFFER 2 symbolic naine of buffer, if present implies

double buffering

MAX BLOCK size of largest block, must be !-4095,

default is 320

RECORD FORM variable, fixed, or mixed, default is variable

RECORD SIZE decimal number if fixed record form, symbolic

name of procedure if mixed record form

BLOCK SERIAL included in file or not
NUMBERS

ERROR symbolic name of user error routine

LABELS standard labels present or not (tape only)

MODE binary, bcd, or mixed (card input only)

DENSITY low or high for magtape
MULTIFILE for tape only, more than one file for this reel

RETENTION number of days

PREHEADER symbolic name of user routine

POST HEADER " " " 1 "

PRE TRAILER

POST TRAILER U to 1I

FILE NAME for header checking (input) or putting into

header (oucput)

9.3.2 Fila Desiqnator Word

FCO file control block name

10 input or output

OPEN rewind on open or not

CLOSE rewind on close or not

145

PRIME for bufiered input file, whether or not to fill

buffer at open

SIZE for buffered output file, programmer wrill call

putsz (0) on close

REQ abort if file not present or not

FILE position to file n on multifile tape

9.4 Buffering

GEFRC requires that the user take responsibility for buffering. The

user must decide whether or not he wants buffering and if he does (necessary

for logical record processing) whether he wants single or double buffering. It

is also the user's responsibility to set aside space for any buffers and buffer

control words which may be needed. With logical record processing, a block,

or physical record, is the unit of transaction with the device. It is a single

block which resides in a buffer. Logical records are treated by manipulhting

the current record index (the address of the ,gical record) and the record size,

both of which are fields within the fcb.

We have found that it is not necessary to have all this machinery to

explain, logically, what ib happening. We give here our model of the GEFRC

buffering scheme. A buffer is determined by three items, the CRI or

current record index which is the address of the buffer, the BSR or buffer size

register which is the number of words in the buffer, and the CW or current

word which is that buffer word currently of interest. The words in the buffer

are numbered starting from zero. Thus the maximum legal value of CW is

BSR-1. The address of the word indicated by CW is CRI iCW.

CRI -- !. CW--

buffer [1L7§1 7.II _ _

BSR

147

There are various commands which operate on buffers:

GVBUF - frees the buffer pointed to by CRI

GBUF - allocate a buffer of size BSR. Set CRI to point to ths
buffer. Set CW to zero.

READN - put contents of current node into word pointed at by CW.

CW +- CW+ 1
WRITEN - put contents of word pointed at by CW into current node.

CW +- CW + 1.

To handle the GEFRC block structure, two commands and a predicate

are needed:

BLOCKOUT - does XFORM to create a block in the file, and sets

block length to zero.

RECORDOUT - does XFORM to create a record in the file, and does

block length +- block length + BSR.

BUFFERNOTFULL- if block length + BSR -5 MAXBLOCK then true else false.

9.5 Logical Record Processing

The user may read logical records from Input files and write logical

records to output files. The GEFRC routines which perform these logical

reads and writes also accomplish the necessarý blocking, deblocking, and the
physical record reading and writing in accordance with information in the file

control block. As an option, the logical read and write requests may cause

the logical records to be physically moved between the buffers and specified

working storage locations. After a file has been processed, it must be closed.
When a file is closed, the buffers are emptied and label procE.ssing and

repositioning occur as specified by the calling sequence and "he file control

blcck.

148

9.5.1 GET

The GET macro obtains the next logical input record from a designated

input file. The calling sequence is

CALL GET (fcb, eof [,stor])

where fcb is the name of a file control L,' ck

eof is the name of a user's end-of.-file routine

stor is the name of a working storage area into which the record is .o

be copied (optional).

Following a call to GET, the (*rent record index points to the record in the

buffer and the record size field contains the number of words in the record.

Logical record processing assumes.that an RB node is the current node. Each

macro must assure that, at its completion, this is true. The GET macro is as

follows:

GET MACRO (fcb, eof [, storJ)

ONNODE (RB,ELSE) GOTO (NEXT,eof)

GVBUF

MOVEH F

BSR .- record size (Note 1)

GBUF

FOR i - 1,...,BSR DO MOVEH F; READNT

MOVEH F; MOVEH F

ONNODE (RB,BE) GOTO (¢DONENEXT)

MOVEH F

ONNODE (BB, TRAILER, EOF) GOTO (NEXT,€DONE,MDONE)

MOVEH F

ONNODE (RB,BE) GOTO (¢DONE,¢L)

€DONE [copy buffer to storj (Note 2)

GET MEND

Note 1: The determination of the record size depends on the record type. For

fixed length records, the length was placed into BSR at OPEN. For mixed

length records, a user routine (specified in the fcb) is invoked:

BSR 4- user routine

149

For variable length records, the value in the size node is read:

BSR +- cont (size-node)

Note 2: If user storage location is specified, content,- of buffer is copied to

that location.

9.5.2 GETBK

The macro GETBK obtains the first logical record in the next physical

record from a designated input file. The calling sequence is

CALL GETBK (fcb, eof L , stor]).

The GETBK macro performs the same functions as the GET macro except that all

logical records remaining in the last accessed physical record are ignored.

The GETBK macro is as follows:

GETBK MACRO (fcb,eof[,stor])

MOVEH F

ONNODE (BB, TRAILER, EOF, ELSE) GOTO (NEXT, eof, eof, ¢L)
MOVEH F

ONNODE (RB,BE,BSN) GOTO (MLL,¢LNEXT)
MOVEH F

eLL GET (fcj ,eof[,storj)

GETBK MEND

9.5.3 PUT

The PUT macro allocates space within a buffer for the designated out-

put file for inserting the ne',:t lorical record of that file and, if desired, moves

that logical record to the alocated area. The calling sequence is

CALL PUT (fcbL stor I).

Following a call to PUT, the current record index points to the logical record

and the record size field indicates its size. The record size field must have

been set prior t- the cal. to PUT. Note that PUT does not transmit the record;

rather it allocates o buffer space for the record. The record is not transmitted

until the next call to PUT. Thus a programmer may modify a recc'rd in the

1 5()

output buffer (see PUTSZ, 9.5.6 below). The PUT macro is as follows:

PUT MACRO (fcb [,stor J

RECORD OUT

MOVEH F

FOR 1-- 1,...,BSR DO [WRITEN;MOVEH F]

GVBUF

BSR +- record size

ON BUFFERNOTFULL GOTO CX

BLOCKOUT

Cx GBUF

[copy stor to logical record]
PUT MEND

9.5.4 PUTBK

The PUTBK macro allocates space at the beginning of a buffer for the

designated output file iur inserting the next logical record of that file and, if
deslred,moves that logical record to the allocated area. The calling sequence

Is:

CALL PUTBK (fch r'

The call to PUTBK performs as a call to PUT except that the logical record will
be first in a new physical record. This implies that the physical record which
has been under construction in the buffer may be shorter than the usual

physical record for this file. The PUTBK macro, which follows, uses a call
to PUT with a large record size to force termination of the current physical

record, followed by a call to PUTSZ (9.5.6) to reposition at the beginning of

the block, followed Dy a call to PUT to actually allocate the record:

PUTBK MACRO (fco ,stor J)

t +- record size

record size +- MAXBLOCK

PUT (feb)

PTITSZ (fcb,0)

record size +- t
PU1T (fb: ,storr j)

PUTBK v : N I')

151

9.5.5 COPY

The COPY macro moves the last accesse' logical input record from the

designated irnput file to the next available position in the design-ted output
file. The calling sequence is

CALL COPY (fcb-out, fcb-in)

The CALL COPY command performs the same function as CALL PUT except that

the current record index of the input file is useu 'n place of the usual working

storage location (stor in CALL PUT). The size of the record is determined by

the record size field of the output file control block. The input file control

block (fcb-in) is not modified or checked in any manner, See description of

PUT for return and exception condition information. The COPY macro is as
follows:

COPY MACRO (fcb-out, fcb-in)

PUT (fcb-out, current record index fcb-in)

COPY MEND

9.5.6 PUTV7

The PJ'.SZ mdcro is used to update the file control block of the desig-

nated output file to reflect the true size of the last logical record placed in

that file. The calling sequence is:

CALL PUTSZ (fcb. sizj).

"This macro is generally used in the case where an output record of unknown

length is to be constructed in the buffer. Either CALL PUT or CALL PUTB3K is

issued with the record size field of the file control block set to some maximum

record size value. Space for this maximum size record is thus reserved.

After the record has been constructed and its actual length determined, the

CALL PUTSZ command is issued to undate the file control block with the

appropriate pointers. The PUTSZ macro is as follows:

PUTSZ MACRO (fcb, size)

BSR ý- size

PUTSZ MEND

152

9.5.7 RELSE

The RELSE macro causes the next referenced logical record of the des-

ignated file to be the first logical record of the next physical record. The

calling sequence is

CALL RELSE (fcb)

If the file designated by fcb is an input file, then any logical records remain-

ing in the current physical record will be ignored. The next logical record

request will obtain the first logical record in the next physical record. If the

file designated by fcb is an output file, then the physical record currently

under construction will be written. This physical record may be shorter than

the usual record created for this file. The next logical record on this file will

begin a new physical record. We shall describe two macros, RELSEIN and

RELSEOUT, for the two cases.

The REL0BIN macro is similar to the GETBK macro without the final GET:

RELSEIN MACRO (fcb)

L MOVEH F

ONNODE (BB,TRAILER,EOF, ELSE) GOTO (NEXT, eLL, ¢LL, ¢L)

MOVEH F

ONNODE (RB,BE,BSN) GOTO (¢LL,4eL,NEXT)

MOVEH F

eLL

RELSEIN MEND

The RELSEOUT macro is essentially the PUTBK macro without the final

PUT:

RELSEOUT MACRO (fcb)

t +- record size

record size +- MAXBLOCK

PUT (fob)

PUTSZ (fcb, O)

record size +- t

RELSEOTIT MEND

153

9.6 Device Positioning Commands

These commands handle the positioning of input/output devices. Some

of these commands apply only to unlabeled or multifile tapes,, Since we have

not attempted to model these, only verbal descriptions will be given.

9.6.1 REWIND

REWIND MACRO (fcb)
MOVEH R

MOVEH F

REWIND MEND

9.6.2 WE' (multifile)

The WEF macro writes a file mark or an output file. A file mark is a

single character record, If the character is 1781 it is interpreted as a standard

erd-of-fiie. Otherwise it triggers a call to a user provided routine. The

calling sequence is:

CALL WEF (fcb., file mark).

9.6.3 FSTFM (multi..'e,unlabeled)

The FSTFM macro forward spaces an unlabeled multifile tape to a

position immediately following the -,th succeeding standard end-of-file. The

calling sequence is:

CALL FSTFM (fcb,_n).

9.6.4 BSTFM (multifileunlabeled)

".he BSTFM macro toack spaces an unlabeled multifile tape to a position

immediately following the nth preceding standard end-of-fiJe. The calling

,equence is:

CAIL BSTFM (fcb,nj.

154

9.6.5 FSREC (tape cnly)

The FSREC macro is used to space over the next n physical records on

the designated magnetic tape file in a forward direction. The calling sequence

is:

CALL FSREC (fcb,nn,eojf

The tape is positioned immediately after the nth physical record which follows

the initial position of the tape. For a buffered file, if the last command issued

for that file referenced a logical record, then the initial positicn of the ta'• is

assumed to be immediately after the physical record that contained that logical

record. If a file mark (any single character record) is encountered before n

physical records have been bypassed, then return is to the location as eof in

the calling sequence.

9.6.6 BSREC (tape only)

The BSREC macro is used to space over the n last accessed physical

records on the designated magaetic tape in a backward direction. The calling

sequence is:

CALL BSREC (fcb, n, eofj

The tape is positioned immediate ly ahead of the nth physical record which

preceded the initial position of the tape. For a buffered file, if the I ,L

command issued for that file referenced a logical record, then the :ial posi-

tion of the tape is assumed to be immediately after the physical record that

contained that logical record. If a file mark is encountered before n physical

records have been bypassed, then return is to the ocation given as eof in the

calling sequence.

9.6.7 FORCE

The FORCE macro is used to force an end-oi-reel condition on a radg-

netic tape file. The calling sequence is:

CALL FORCE (fcb)

155

If the file is an output file, 'an end of file (file mark = 178) will be written on

the current tape. If buffered, the physical record under construction in the

buffer will be written prior to writing the file mark. If labeled, the trailer
label will be written on the current tape. Unit switching will then be performed.

The header label on the new tape will be checked for an expired retenti.'n

period and the new label, if so indicated, will be written. If the file is an
input file, unit switching will be performed. If labeled, the header label on

the new tape will be checked.

9.7 Physical Record Processing

uEFRC physical record processing is low level and quite powerful.

Input/output is initiated via call to READ or WRITE. This call causes an input/
output operation to be started. This operation will occur in parallel with user

program execution. Synchronization is obtained by use of a call to WATT.
Input/output may be either consecutive or random, and may include a scatter

read or a gather write. These options are specified by the use of a list of data

control words (DCWs). It is also possible to specify a "courtesy call" routine

to be executed at completion of the input/output request. A program running
in courtesy call has certain special properties (for example, it cannot be

swapped). Because it is ai such a low level, we have not attempted to model

GEFRC physical rt, ore1 processing.

9.8 Input/Output Editor Functions

GEFRC includes a set of high level routines specifical'y designed to

provide for certain special purpose requirements of the language processors.

These include providing a limited output formatting capability fo. both printed

and punched output. It includes the ability to convert i.,put from COMDEK
ýompressed)to Hollerith format, to merge an ALTER file with the primary source
language input and to create an updated COMDEK output file from the merged

input. In addition, the output routines included here provide an accurate

interface with the standard output file. We do not attempt to describe these

routines in detail but include them here for the sake of completeness.

156

9.8.1 IOEDIT

The IOEDIT macro initializes the edit functions such as PRINT and

PUNCH with parameters which do not vary with each call to these routines.

Parameters include heading lines for printed reports, format information for

columns 73-80 of punched output, and page numbering information.

9.8.2 RDREC

The RDREC mat o obtains the next logical input record from the des-

ignated file (with decompression from COMDEK format, if necessary) or from

an Alter file of changes to the designated file; and, if required, compresses

this logical record into the COMDEK format and insert it into the file desig-

riated as K*.

9.8.3 WTREC

The WTREC macro inserts a logical record in the next available position

in the designated output file if the record is to be a printed line or a punched

card.

9.8.4 PRINT

The PRINT macro inserts a line into the one current printed report whose

pages are automatically titled and subtitled, numbered, and controlled by an

Internal line counter.

9.8.5 EPRINT

The EPRINT macro causes certain special editing of a printed line prioi

to writing via the PRINT routine.

9.8.6 PUNCH

The PUNCH macro inserts a punched card image in the next available

position in the designated output file.

1 57

9.9 File Preparation Commands

The file preparation commands are OPEN, CLOSE, SETIN, and SETOUT.

These commands prepare a file for proper use by the other commands. We

shall describe the macros in English only.

9.9.1 OPEN

The OPEN macro initializes a file so that it may be properly accessed

by the other macros. It is implemented by successively refining the general

file template to provide information about labels, block serial numbers,

blocking, record format, maximum blocksize, and other information needed in

the fcb.

9.9.2 CLOSE

The CLOSE macro disconnects a file when no further activity is to be

performed on it. It is implemented for output files by writing an end-of-file

record, emptying the buffer, and writing a trailer record. The CLOSE is com-

pleted by an XFORM which essentialiy causes the file system to forget the

structure of the file.

9.9.3 SETIN

The SETIN macro sets a currently open file to be an input file. This is

done by use of XFORM to change the input-output status of the file.

9.9.4 SETOUT

The SETOUT macro sets a currently open file to be an output file. This

is done by use of XFORM to change the input-output status of the file.

BIBLIOGRAPHY

Mealy, Cheatham, Farber, Morenoff, and Sal ley, Program Transferability
Study Group Report, November 1968, NTIS Document #AD-678-589.

Sattley, Millstein, and Warshall, On Program Transferability. November 1970,
NTIS Document #AD-716-476.

A Panel Session - Software Transferability, Proceedings SJCC, AFIPS 1969,
Vol. 34, AFIPS Press, pp 605-612.

SCOPE Reference Manual 6000 Version 3.3, Control Data 6000 Computer
Systems, CDC Pub. No. 6035200, March 1972.

Supervisor and Data Management Services IBM System/360 Operating System,
IBM SRL Form C28-6646-2, N6vember 1968.

Supervisor and Data Management Macro Instructions, IBM System/360 Ope-
ating System, IBM SRL Form C28-6647-3.

GE-625,/635 File and Record Control. General Electric Information Systems
Division, CPB 1003D.

WU.S. GOVERNMENT PRINTING OFFICE, 1972-714-516/9

150

